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Abstract— We address the average-consensus problem for a
distributed system whose components (nodes) can exchange
information via unreliable interconnections (edges) that form
an arbitrary, possibly directed topology (digraph). We consider
a general setting where heterogeneous communication links may
drop packets with generally unequal probabilities, indepen-
dently between different links. We develop a distributed linear-
iterative algorithm in which nodes maintain and update certain
values based on the corresponding values they successfully re-
ceive from their in-neighbors. We demonstrate that, even when
communication links drop packets with unequal probabilities,
the proposed algorithm allows nodes to asymptotically reach
average-consensus almost surely, as long as the underlying
(possibly directed) communication topology forms a strongly
connected digraph. Additionally, we provide a bound on the
algorithm convergence rate.

I. INTRODUCTION AND BACKGROUND

Consider a set of interconnected nodes (which could be

sensors in a sensor network, routers in a communication

network, or unmanned vehicles in a multi-agent system).

In the so-called consensus problem, each node possesses

an initial value and the nodes need to follow a distributed

strategy to agree on the same (a priori unknown) value

by calculating some function of these initial values. If the

consensus value is the average of the initial values, then the

nodes are said to reach average consensus. Consensus (and

average consensus) problems have received extensive atten-

tion from the control community due to their applicability

to topics such as cooperative control, multi-agent systems,

and modeling of flocking behavior in biological and physical

systems (see, e.g., [1], [2] and references therein).

This paper develops linear-iterative algorithms for average-

consensus when the interconnection topology is described

by a directed graph (digraph) that is not necessarily fully

connected and whose edges are unreliable, i.e., each edge

may drop packets with some probability. Unlike our work in

[3] (where we assume that the probability of a packet drop is

the same for every link), in this paper, although we assume

that, at each time step, a packet containing information from

node i to node j (sent through an existing edge in the

digraph) is dropped with some probability, and although we

assume independence between packet drops at different time

steps or different links, we allow the probabilities of packet

drops to be heterogeneous at each link.
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The starting point for this work is an algorithm that relies

on two linear iterations [4], [5]; we refer to this algorithm as

ratio-consensus. It is easy to see that, except for the initializa-

tion of both iterations, the ratio-consensus algorithm in [4],

[5] (which assumes perfectly reliable communication links)

is a particular case of a gossip-based algorithm proposed in

[6] (which also assumes perfectly reliable communications),

where the transition matrices describing each linear iteration

are allowed to vary with time.

Apart from our work in [3], average-consensus in the

presence of unreliable communications has also received at-

tention in [7], [8], [9]. The work in [7] assumes that the graph

describing the communication network is undirected and,

when a communication link fails, it affects communication in

both directions. Additionally, nodes have some mechanism

to detect link unavailability and can compensate for it by

rescaling their other weights The work in [8] can handle

directed graphs and proposes two compensation methods

to account for communication link failures. However, both

compensation methods cannot guarantee consensus to the

exact average of the initial values. The authors in [9] propose

a strategy that corrects the errors in the state iteratively

calculated by each node by acknowledging messages and

retransmiting information an appropriate number of times.

II. PRELIMINARIES

Here we provide necessary background on graph-theoretic

notions and present the original ratio consensus algorithm in

[4], [5], which requires reliable communication links; we

also introduce the communication link availability model.

A. Ratio Consensus in the Presence of Reliable Links

The information exchange between nodes can be described

by a directed graph G = {V , E}, where V = {1, 2, . . . , n}
is the vertex set (each vertex corresponds to a system node),

and E ⊆ V×V is the set of edges, where (j, i) ∈ E if node j
can receive information from node i. Note that E could be a

proper subset of V×V , but we require the graph (V , E) to be

strongly connected. For notational convenience (and without

loss of generality), we allow self-loops for all nodes in G
(i.e., (j, j) ∈ E for all j ∈ V). All nodes that can possibly

transmit information to node j are called its in-neighbors,

and are represented by the set N−
j = {i ∈ V : (j, i) ∈ E}.

The number of in-neighbors of j (including itself) is called

the in-degree of j and is denoted by D−
j = |N−

j |. The nodes

that have j as neighbor (including itself) are called its out-

neighbors and are denoted by N+
j = {l ∈ V : (l, j) ∈ E};

the out-degree of node j is D+
j = |N+

j |.



Let y0(j) be the initial value of node j; assuming that the

communication network graph (G, E) is strongly connected,

we showed in [4], [5] that average consensus can be asymp-

totically reached by executing

yk+1(j) =
∑

i∈N
−

j

1

D+
i

yk(i), (1)

zk+1(j) =
∑

i∈N
−

j

1

D+
i

zk(i), (2)

where D+
j is the out-degree of node j, and z0(j) = 1, ∀j.

Then, the nodes can asymptotically calculate the average of

their initial values y =
∑n

l=1
y0(l)

n as

lim
k→∞

yk(j)

zk(j)
= y , ∀j ∈ V . (3)

B. Unreliable Heterogeneous Communication Model

Under the unreliable heterogeneous communication

model, the information exchange between nodes (compo-

nents) at each (discrete) time instant k can be described by

a directed graph G[k] = {V , E [k]}, where G = (V , E) is the

digraph that describes the information exchange and E [k] ⊆
E , ∀k ≥ 0. [At instant k, let xk(j, i) = 0 if (j, i) /∈ E [k]
and xk(j, i) = 1 if (j, i) ∈ E [k].] The simplest probabilistic

model for the communication link from node i to node j
can be described as follows. Under our assumption that link

availability is independent between links and between time

steps, we can model, xk(j, i) as a Bernoulli random variable:

Pr{xk(j, i) = m} =

{

qji, if m = 1,
1− qji, if m = 0.

(4)

We also define the matrix Q = [qji] where the entry at the j th

row, ith column is qji, which is taken to be zero for (j, i) /∈ E
and can be set to one if the link is always available.

III. RESILIENT RATIO CONSENSUS

In this section we briefly review the resilient ratio-

consensus algorithm introduced in [3] to handle unreliable

links that drop packets. The analysis there was limited to

equal probabilities of packet drops; in this paper we (non-

trivially) extend our previous results to the case when packet-

drop probabilities are heterogeneous.

A. Resilient Ratio-Consensus Algorithm Formulation

We next describe how to robustify the ratio-consensus

algorithm against packet dropping communication links. For

the iteration defining the numerator of (3), let yk(j) be node

j’s internal state at time instant k, µk(l, j) denote the mass

broadcast from node j to each of its out-neighbors l (this is

the same for all out-neighbors of node j, i.e., for all l ∈ N+
j ),

and νk(j, i) denote the mass received at node j from node

i ∈ N−
j . Similarly, for the iteration defining the denominator

of (3), let zk(j) be node j’s internal state, σk(l, j) denote

node j’s broadcast mass to each out-neighbor l, l ∈ N+
j

(same for all out-neighbors), and let τk(j, i) denote the total

mass received from i ∈ N−
j . Then, for all k ≥ 0, each node

j computes

yk+1(j) =
1

D+
j

yk(j) +
∑

i∈N
−

j

(

νk(j, i)− νk−1(j, i)
)

,

µk(l, j) = µk−1(l, j) +
1

D+
j

yk(j) =

k
∑

t=0

1

D+
j

yt(j), (5)

where

νk(j, i) =

{

µk(j, i), if (j, i) ∈ E [k], k ≥ 0,
νk−1(j, i), if (j, i) /∈ E [k], k ≥ 0.

Similarly, for all k ≥ 0,

zk+1(j) =
1

D+
j

zk(j) +
∑

i∈N
−

j

(

τk(j, i)− τk−1(j, i)
)

,

σk(l, j) = σk−1(l, j) +
1

D+
j

zk(j) =

k
∑

t=0

1

D+
j

zt(j), (6)

where

τk(j, i) =

{

σk(j, i), if (j, i) ∈ E [k], k ≥ 0,
τk−1(j, i), if (j, i) /∈ E [k], k ≥ 0.

Packet drops in a particular link affect both iterations in the

same way. Also, the initial conditions are set to y0(j) (initial

value of node j) and z0(j) = 1 (as before), with µ−1(j, i) =
ν−1(j, i) = σ−1(j, i) = τ−1(j, i) = 0 for all (j, i) ∈ E .

B. Vectorized Description of the Resilient Ratio-Consensus

In order to ease the calculations, the iterations in (5)–

(6) will be rewritten more compactly in vector form. Using

the definition for the indicator variable xk(j, i) given in (4),

which describes the successful transmission of information

from node i to node j over an existing, unreliable link,

iterations (5) and (6) can be rewritten, for all k ≥ 0, as

µk(l, j) =

{

µk−1(l, j) +
1

D
+

j

yk(j), if l ∈ N+
j ,

0, if l /∈ N+
j ,

(7)

νk(j, i) =







µk(j, i)xk(j, i)+
+νk−1(j, i)(1 − xk(j, i)), if i ∈ N−

j ,

0, if i /∈ N−
j ,

(8)

yk+1(j) =

n
∑

i=1

(

νk(j, i)− νk−1(j, i)
)

; (9)

σk(l, j) =

{

σk−1(l, j) +
1

D
+

j

zk(j), if l ∈ N+
j ,

0, if l /∈ N+
j ,

(10)

τk(j, i) =







σk(j, i)xk(j, i)+
+τk−1(j, i)(1 − xk(j, i)), if i ∈ N−

j ,

0, if i ∈ N−
j ,

(11)

zk+1(j) =
n
∑

i=1

(

τk(j, i)− τk−1(j, i)
)

. (12)

Let A ◦B denote the Hadamard (entry-wise) product of a



pair of matrices A and B of identical size. Then, for all k ≥
0, defining Mk = [µk(j, i)] and Nk = [νk(j, i)], iteration

(7)–(9) can be rewritten in matrix form as

Mk =Mk−1 + Pdiag(yk), (13)

Nk =Mk ◦Xk +Nk−1 ◦ (U −Xk), (14)

yk+1 = (Nk −Nk−1)e =
[

(Mk −Nk−1) ◦Xk

]

e, (15)

where P = [pji] ∈ R
n×n, with pji = 1

D
+

i

, ∀j ∈ N+
i and

pji = 0 otherwise; M−1 = N−1 = 0; U ∈ R
n×n, with

[Uji] = 1, ∀i, j; diag(yk) is the diagonal matrix that results

by having the entries of vector yk on the main diagonal; and

e = [1, 1, . . . , 1]T (note that U = eeT ). Note that Xk is a

matrix whose (j, i) entry is xk(j, i). Similar expressions can

be obtained for (10)–(12), with zk replacing yk, Sk replacing

Mk, and Tk replacing Nk. By letting Ak := Mk − Nk−1,

iteration (13)–(15) can be rewritten as

Ak = Ak−1 ◦ (U −Xk−1) + Pdiag(yk), k ≥ 1, (16)

yk+1 = (Ak ◦Xk)e, k ≥ 0. (17)

Similarly, we can write iteration (10)–(12) with Bk := Sk −
Tk−1 and zk replacing Ak and yk respectively.

For analysis purposes, each matrix in (16)–(17) will be

rewritten in vector form by stacking up the correspond-

ing columns.1 Let F = [In In . . . In] ∈ R
n×n2

,

where In is the n × n identity matrix, and P̃ =
[E1P

T E2P
T . . . EnP

T ]T ∈ R
n2

×n, where Ei ∈ R
n×n

has Ei(i, i) = 1 and all other entries equal zero. [The entries

of EiP
T ∈ R

n×n (PET
i = PEi) are all zero except for

the ith row (column) entries, which are those of the ith

row (column) of matrix PT (P ).] Then, (16)–(17) can be

rewritten as

ak = ak−1 ◦ (u− xk−1) + P̃ yk, k ≥ 1, (18)

yk+1 = F (ak ◦ xk), k ≥ 0, (19)

where ak ∈ R
n2

, xk ∈ R
n2

, and xk−1 ∈ R
n2

result

from stacking the columns of matrices Ak , Xk, and Xk−1,

respectively. Similarly, for the second iteration, we can write

bk = bk−1 ◦ (u− xk−1) + P̃ zk, k ≥ 1, (20)

zk+1 = F (bk ◦ xk), k ≥ 0, (21)

where bk ∈ R
n2

results from stacking the columns of Bk.

Note that the (j, i) entry of matrix Ak (and Bk) and their

corresponding entry in ak (and bk) remain zero if there is no

communication link from node i to node j, i.e., (j, i) /∈ E .

IV. MAIN RESULTS AND IMPLICATIONS

We shall argue that with the resilient ratio-consensus

algorithm described in Section III, and despite the presence

of unreliable communication links that fail at each time step

with (unequal) probabilities (independently from other links

and between time steps), nodes can asymptotically reach

1Vectors defined by stacking the columns of a matrix will be denoted
with the same small letter as the capital letter of the corresponding matrix.

average consensus. More specifically, we will argue that

lim
k→∞

yk(j)

zk(j)
= y, ∀j ∈ V . (22)

with probability one. [Note that zk(j) > 0 for all k since all

zk(0) = 1 and self-loops are reliable (i.e., qjj = 1 for all

j).]
To this end, let C =

[

P̃Fdiag(q) + (I − diag(q))
]

, and

D =
[

I − P̃F
]

, where I is the n2 × n2 identity matrix, and

Π = C ⊗ C +
{

[Ddiag(q)]⊗
[

D
(

I − diag(q)
)]}

G, (23)

where ⊗ denotes the Kronecker product, and G is an n2×n2

diagonal matrix with entries G
(

(l − 1)n2 + l, (l − 1)n2 +
l
)

= 1, ∀l = 1, 2, . . . , n2, and zero otherwise. The following

theorem and lemma establish the main convergence results;

the implications of these results are illustrated next.

Theorem 1: Let yk and zk be the random vectors that

result from iterations (18)–(19) and (20)–(21), and define

vk = yk − yzk, where y =
∑n

l=1
y0(l)∑

n
l=1

z0(l)
=

∑n
l=1

y0(l)

n . If the

underlying graph G is strongly connected and qji > 0 for all

(j, i) ∈ E , then ‖vk‖∞ → 0 almost surely.

Lemma 1: Let λ2 denote the eigenvalue of Π with the

second largest magnitude, then Pr{‖vk+1‖∞ > ǫ} ≤

C′(‖E[w0w
T
0 ]‖∞)1/2k

m2−1

2 |λ2|k/2, where m2 is the alge-

braic multiplicity of eigenvalue λ2 and C′ is some constant

that depends on matrix Π, n, and ǫ.
Example 1: Consider the directed graph in Fig. 1 (where

self-loops are not drawn) and set the initial values of the

five nodes to be y0 = [4, 5, 6, 3, 2]T (with average y = 4).

Assuming no packet drops (perfectly reliable links), we run

the iterations in (1)–(2) and plot in Fig. 2(a) the ratio
yk(j)
zk(j)

as a function of the number of iterations k for each node j.
We observe that all ratios indeed converge to y = 4.

Now, consider the case in which all links in the graph in

Fig. 1 suffer packet drops with equal probability, indepen-

dently between links and between time steps, i.e., we take

qji = 0.8 ≡ q for all (j, i) ∈ E , i 6= j, and qjj = 1 for all

j. In Fig. 2(b) we plot the ratio of
yk(j)
zk(j)

as a function of k;

we observe that the ratios indeed converge to y = 4, but this

convergence takes longer than in the case of reliable links.

Finally, we consider the case when the probabilities of a

packet drop in each link are given by the matrix Q defined

in Fig. 1. In Fig. 2(c) we plot the ratio of
yk(j)
zk(j)

as a function

of the number of iterations k for the iterations in (7)–(12).

The ratios indeed converge to y = 4, but it takes longer than

in the case of reliable links and also appears to take longer

than the equal-probability case. Note that for the Q in Fig. 1,

the average probability of successful transmission is 0.8. �

1 2 

3 4 

5 

Q =













1 0 0 0.9 0

0.9 1 0 0 0

0.7 0.85 1 0 0.6

0 0 0 1 0.9

0 0.85 0.7 0 1













Fig. 1. Small directed graph used for illustrating the resilient algorithm,
and the matrix Q that is used in the case when the probabilities of successful
transmission for each link are generally unequal.
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(b) qji = 0.8, ∀j, i, j 6= i.
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(c) Unequally likely packet drops.

Fig. 2. Five-node example: ratio
yk(j)
zk(j)

for each node j, as a function of the number of iterations k and different link failure probability scenarios.

V. CONVERGENCE ANALYSIS

First, we characterize the first and second moment of the

iterations in (18)–(19), and (20)–(21). The results are then

used to sketch the proofs of Theorem 1 and Corollary 1.

A. First Moment Analysis

Let ak := E[ak], yk := E[yk], bk := E[bk], and zk :=
E[zk]. We show that ak and bk (and also yk and zk) converge

to identical vectors up to scalar multiplication. Note that q
is a vector that results from stacking up the columns of Q.

Lemma 2: The evolution of ak, yk, bk, and zk, ∀k ≥ 1,

is governed by

ak =
[

P̃Fdiag(q) + (In2 − diag(q))
]

ak−1, (24)

yk+1 = Fdiag(q)ak, (25)

bk =
[

P̃Fdiag(q) + (In2 − diag(q))
]

bk−1, (26)

zk+1 = Fdiag(q)bk, (27)

where Im is the m × m identity matrix and diag(q) is a

diagonal matrix with the entries of vector q defining its

diagonal. The initial conditions of the iterations are a0 =
P̃ y0, y1 = Fdiag(q)P̃ y0, b0 = P̃ z0, and z1 = Fdiag(q)P̃ z0.

Proof: Since the development for obtaining ak and

yk is parallel to that for obtaining bk and zk, our analysis

focuses on the first case. For k = 0 in (18)–(19), by taking

expectations of both sides and noting that packet drops at

time step k = 0 are independent of the initial values for a0,

it follows that a0 = P̃ y0, and y1 = Fdiag(q)a0; therefore,

y1 = Fdiag(q)a0 = Fdiag(q)P̃ y0. For k ≥ 1 in (18)–(19),

by taking expectations on both sides and noting that packet

drops at time step k are independent of previous packet drops

and the initial values of a0, we obtain

ak = ak−1 ◦ (u− xk−1) + P̃ yk,

= (In2 − diag(q))ak−1 + P̃ yk, (28)

yk+1 = F (ak ◦ xk),

= Fdiag(q)ak. (29)

Substituting (29) into (28), we complete the proof.

Lemma 3: The first moments of ak and bk (also yk and

zk) asymptotically converge to the same solution up to scalar

multiplication. Specifically, limk→∞ ak = y limk→∞ bk, and

limk→∞ yk = y limk→∞ zk, where y =
∑

n
l=1

y0(l)

n .

Proof: Since P is column stochastic, it follows that

[P̃Fdiag(q) + (In2 − diag(q))] is also column stochastic

(because 0 ≤ diag(q) ≤ 1). In fact, since P is also primitive,

it corresponds to an underlying graph G that is strongly

connected. One can easily establish that [P̃Fdiag(q)+(In2−
diag(q))] will have a single (reachable) recurrent class as

long as each of the edges of the underlying strongly con-

nected graph admit a nonzero probability of transmission

(i.e., for each (j, i) ∈ E , qji > 0 which implies that q will

have a positive entry at its ((i − 1)n + j)th position). The

proof is omitted due to space limitations.

From the fact that [P̃Fdiag(q)+(In2−diag(q))] is column

stochastic and has a single recurrent class, we know that

the solutions of (24) and (26) are unique up to scalar

multiplication, i.e., limk→∞ ak = α limk→∞ bk, for some α.

Then, from the column stochasticity property:
∑n2

j=1 bk(j) =
∑n2

j=1 b0(j) =
∑n

j=1 z0(j) = n and
∑n2

j=1 ak(j) =
∑n2

j=1 a0(j) =
∑n

j=1 y0(j), ∀k ≥ 1; this implies that α = y.

It immediately follows that limk→∞ yk = y limk→∞ zk.

B. Second Moment Analysis

Next, we establish that the evolution of Γk := E[aka
T
k ],

Ψk := E[bkb
T
k ], Ξk := E[akb

T
k ], Φk := E[yky

T
k ], Λk :=

E[zkz
T
k ], and Υk := E[ykz

T
k ] can be expressed as linear

iterations with identical dynamics but different initial condi-

tions. We additionally show that the steady-state solutions of

Γk, Ψk, and Ξk (and also Φk, Λk, and Υk) are identical up

to scalar multiplication.

Lemma 4: Let x, c and d be random vectors of dimension

m. Furthermore, assume that the entries of x are independent

(not necessarily identical) Bernoulli random variables such

that Pr{xi = 1} = qi and Pr{xi = 0} = 1 − qi, ∀i =
1, 2, . . .m, and are independent from c and d. Then

S = E
[

(c ◦ x)(x ◦ d)T
]

= diag(q)E[cdT ]diag(q)+
+ diag(q)diag(E

[

cdT
]

)(Im − diag(q)) ,

T = E
[(

c ◦ x
)(

(u − x) ◦ d
)T ]

= diag(q)E[cdT ](Im − diag(q))−
− diag(q)diag(E

[

cdT
]

)(Im − diag(q)) ,

where diag(E
[

cdT
]

) is a diagonal matrix with the same

diagonal as E
[

cdT
]

.

Proof: The (i, j), i 6= j, entry of S can be obtained

as Sij = E
[

cixidjxj
]

and, since xi and xj are pairwise

independent, and independent from c and d, it follows that

E
[

cixidjxj
]

= qiE
[

cidj
]

qj . For i = j, observing that

E[xixi] = E[xi] = qi, ∀i = 1, . . . ,m, we obtain that



Sii = E
[

cixidixi
]

= E
[

cidixi
]

= qiE
[

cidi
]

. Combining

these two facts, the expression for S follows. The expression

for T can be similarly established.

Lemma 5: The evolutions of Γk, Φk, Ψk, Λk, Ξk,

Υk, ∀k ≥ 1, are described by the following iterations:

Γk =CΓk−1C
T+

+Ddiag(q)diag(Γk−1)(I − diag(q))DT , (30)

Φk+1 =Fdiag(q)Γkdiag(q)FT+

+ Fdiag(q)diag(Γk)(I − diag(q))FT , (31)

Ψk =CΨk−1C
T+

+Ddiag(q)diag(Ψk−1)(I − diag(q))DT , (32)

Λk+1 =Fdiag(q)Ψkdiag(q)FT+

+Ddiag(q)diag(Ψk)(I − diag(q))DT , (33)

Ξk =CΞk−1C
T+

+Ddiag(q)diag(Ξk−1)(I − diag(q))DT , (34)

Υk+1 =Fdiag(q)Ξkdiag(q)FT+

+Ddiag(q)diag(Ξk)(I − diag(q))DT , (35)

with initial conditions

Γ0 = P̃ y0y
T
0 P̃

T ,

Φ1 = Fdiag(q)P̃ y0y
T
0 P̃

T diag(q)FT +

+Fdiag(q)diag(P̃ y0y
T
0 P̃

T )(I − diag(q))FT ,

Ψ0 = P̃ z0z
T
0 P̃

T ,

Λ1 = Fdiag(q)P̃ z0z
T
0 P̃

T diag(q)FT +

+Fdiag(q)diag(P̃ z0z
T
0 P̃

T )(I − diag(q))FT ,

Ξ0 = P̃ y0z
T
0 P̃

T ,

Υ1 = Fdiag(q)P̃ y0z
T
0 P̃

T diag(q)FT +

+Fdiag(q)diag(P̃ z0z
T
0 P̃

T )(I − diag(q))FT .
Proof: For k = 0, it follows from Lemma 2 and (18)

that a0 = P̃ y0. Then, Γ0 = E[a0a
T
0 ] = P̃ E[y0y

T
0 ]P̃

T =
P̃ y0y

T
0 P̃

T , Φ1 = E[y1y
T
1 ] = E

[

F (a0◦x0)(x0◦a0)TFT
]

=
F E

[

(a0 ◦ x0)(x0 ◦ a0)T
]

FT , and applying the results in

Lemmas 2 and 4, it follows that

Φ1 = Fdiag(q)E
[

a0a
T
0

]

diag(q)FT+ (36)

+ Fdiag(q)diag(E
[

a0a
T
0

]

)(I − diag(q))FT

= Fdiag(q)P̃ y0y
T
0 P̃

T diag(q)FT+ (37)

+ Fdiag(q)diag(P̃ y0y
T
0 P̃

T )(I − diag(q))FT .

Taking into account that yk = F (ak−1 ◦ xk−1), it follows

that for k ≥ 1 we have

Γk =E
[(

ak−1 ◦ (u− xk−1) + P̃ yk
)

(

ak−1 ◦ (u− xk−1) + P̃ yk
)T ]

=E
[(

ak−1 ◦ (u− xk−1)
)(

ak−1 ◦ (u− xk−1)
)T ]

+E
[(

ak−1 ◦ (u− xk−1)
)(

ak−1 ◦ xk−1

)T ]
FT P̃T

+ P̃F E
[(

ak−1 ◦ xk−1

)(

ak−1 ◦ (u− xk−1)
)T ]

+ P̃F E
[(

ak−1 ◦ xk−1

)(

ak−1 ◦ xk−1

)T ]
FT P̃T ;

then, by applying Lemma 4 four times and rearranging terms,

we write the expression above as in (30). Using yk+1 =
F (ak ◦ xk) and applying Lemma 4 once more, (31) results.

The expressions for Ψk, Λk+1, Ξk, and Υk+1 can be

derived in a similar fashion and are omitted for brevity.

Remark 1: Although omitted in the statement of

Lemma 5, ∆k = E[bka
T
k ] and Θk = E[zky

T
k ] can be easily

obtained by noting that ∆k = ΨT
k and Θk = ΥT

k . �

Next, we show that the steady-state solutions of Γk, Ψk,

Ξk and ∆k are identical up to scalar multiplication. To see

this, we will rewrite (30), (32), and (34) in vector form using

Kronecker products. For matrices C, A, and B of appropriate

dimensions, the matrix equation C = AXB can be rewritten

as (BT ⊗A)x = c, where x and c are the vectors that result

from stacking the columns of X and C respectively, and ⊗
denotes the Kronecker product [10].

Let γk be the vector that results from stacking the columns

of Γk, and let Π be the matrix defined in (23). Then, using

the ideas above, we can rewrite (30) as

γk = Πγk−1, k ≥ 1. (38)

If we let ψk, ξk, δk be the vectors that result from stacking

the columns of Ψk, Ξk and ∆k respectively, then it also easy

to see that the same recurrence relation as in (38) governs

the evolution of ψk, ξk and δk.

The structure and fundamental properties of the matrix Π
are established in the next theorem (the proof is omitted due

to space limitations), from where it follows that the steady-

state solutions of γk, ψk, ξk and δk (and therefore Γk, Ψk,

Ξk and ∆k) are identical up to scalar multiplication.

Theorem 2: Let P ∈ R
n×n be a column stochastic and

primitive weight matrix associated with a directed graph

G = {V , E}, with V = {1, 2, . . . , n} and E ⊆ V × V .

Let F = [In In . . . In] ∈ R
n×n2

, where In is the n × n
identity matrix, and P̃ = [E1P

T E2P
T . . . EnP

T ]T ∈
R

n2
×n, where each Ei ∈ R

n×n, i ∈ {1, 2, . . . , n}, satisfies

Ei(i, i) = 1 and has all other entries equal to zero. Then,

for any2 vector q, 0 < q ≤ 1, the matrix Π that defines

(38) is column stochastic, and it has a single eigenvalue of

maximum magnitude at value one.

The next two lemmas establish that the first and second

moments of ak and bk (also yk and zk) converge to the same

solution up to a scalar multiplication. These lemmas are used

in Section V-C to show that as k → ∞, the random vector

vk = yk − yzk converges to v = 0 almost surely. Thus, as

k → ∞ (and since zk(j) > 0), each node j can obtain an

estimate of y by calculating yk(j)/zk(j).
Lemma 6: Define wk = ak − ybk and denote by χk the

vector that results from stacking the columns of Xk :=
E[wkw

T
k ]. Then, it follows that χk = Πχk−1 with χ0 =

γ0 + y2ψ0 − y(ξ0 + δ0) and
∑n4

l=1 χ0(l) = 0.

2Taking the vector q to be strictly positive implies that all qji, i, j ∈
{1, 2, ..., n}, need to be strictly positive, including pairs (j, i) /∈ E . It can
be shown that this can be done without loss of generality because non-
existing links are excluded from the structure of matrix P (and matrix P̃ );
in other words, the fact that their corresponding q’s have nonzero values
has no effect on the iterations.



Proof: Since Xk := E[wkw
T
k ] = E[aka

T
k ] +

y2 E[bkb
T
k ]− y(E[akb

T
k ]+E[bka

T
k ]) = Γk + y2Ψk − y(Ξk +

∆k), it follows that χk = γk + y2ψk − y(ξk + δk). From

(38) and subsequent discussion, it follows that γk = Πγk−1,

ψk = Πψk−1, ξk = Πξk−1, and δk = Πδk−1, thus

χk = Πγk−1 + y2Πψk−1 − y(Πξk−1 +Πδk−1) = Π(γk−1 +
y2ψk−1 − y(ξk−1 + δk−1)) = Πχk−1.

Now, in Lemma 5, it was shown that Γ0 = P̃ y0y
T
0 P̃

T ,

Ψ0 = P̃ z0z
T
0 P̃

T , and Ξ0 = P̃ y0z
T
0 P̃

T = ∆0. Since γ0, ψ0,

ξ0, and δ0 result from stacking the columns of Γ0, Ψ0, Ξ0,

and ∆0, it follows that
∑n4

l=1 γ0(l) =
∑n2

i=1

∑n2

j=1 Γ0(i, j) = (
∑n

i=1 y0(i))
2
,

∑n4

l=1 ψ0(l) =
∑n2

i=1

∑n2

j=1 Ψ0(i, j) = (
∑n

i=1 z0(i))
2
,

∑n4

l=1 ξ0(l) = (
∑n

i=1 y0(i)) (
∑n

i=1 z0(i)),
∑n4

l=1 δ0(l) = (
∑n

i=1 z0(i)) (
∑n

i=1 y0(i)),
where the last equality in each of the above expressions is

obtained by taking into account that i) matrix P̃ is column

stochastic by construction, and ii) for any a, b ∈ R
n, we have

that
∑n

i=1

∑n
j=1(ab

T )(i, j) = (
∑n

l=1 al)(
∑n

l=1 bl). Since

y =
∑n

j=1
y0(j)

∑
n
j=1

z0(j)
, it follows that

∑n4

l=1 χ0(l) =
∑n4

l=1(γ0(l) +

y2ψ0(l)− y(ξ0(l) + δ0(l))) = 0.

C. Convergence of the Resilient Ratio-Consensus Algorithm

Here, we only sketch the proofs for Theorem 1 and

Corollary 1 (stated in Section IV); these proofs are similar

to the corresponding ones in [3], and therefore are omitted.

Theorem 1 establishes that, in the limit as the number of

iterations k becomes large, the values of vectors yk and zk
will be perfectly aligned so that vk = yk − yzk = 0 with

probability one. Thus, in the limit, each node j can calculate

the value of y by obtaining
yk(j)
zk(j)

, as long as zk(j) 6= 0.

Theorem 1 proof sketch: The result follows from the

first Borel-Cantelli Lemma. For all k ≥ 0, and all ǫ >
0, the key is to upper bound

∑∞

k=0 Pr{‖vk‖∞ > ǫ} by
1
ǫ

∑∞

k=0 E [‖vk‖2] and then establish that E [‖vk‖2] → 0
as k → ∞ geometrically fast. To this end, we can show

by Lemma 5 that E[vkv
T
k ] can be written as a function

of Xk−1 = E[wk−1w
T
k−1] as defined in Lemma 6. Thus,

the evolution of E[vkv
T
k ] is governed by the evolution of

Xk−1 or by χk−1 (the vector that results from stacking the

columns of Xk−1). In Theorem 2, we showed that Π is

column stochastic and has a unique eigenvector (with all

entries strictly positive) associated to the largest eigenvalue

λ1 = 1. Then, the solution of χk = Πχk−1 is unique

and equal to this eigenvector (up to scalar multiplication);

but Lemma 6 established that
∑n4

l=1 χ0(l) = 0, therefore

limk→∞ χk(l) = 0, ∀l. Additionally, the convergence of

χk = Πχk−1 is geometric with a rate of convergence

given by |λ2| where λ2 is the eigenvalue of Π of second

largest modulus, which satisfies |λ2| < λ1 = 1 [11]. Some

additional manipulations of E[vkv
T
k ] lead to the result. �

Lemma 1 establishes the number of iterations k after

which yk and zk will satisfy |yk − yzk| ≤ ǫ, for a given

accuracy level ǫ, with some desired probability. This proba-

bility goes to 1 with a geometric rate governed by |λ2|1/2,

where λ2 is the eigenvalue of Π of second largest modulus.

Lemma 1 proof sketch: It is well-known (see, e.g., [10,

Thm. 8.5.1]) that ‖Πk − L‖∞ ≤ Ckm2−1|λ2|k, for some

constant C = C(Π), where L = limk→∞ Πk is a rank-

one column stochastic matrix. It then follows that ‖(Πk −
L)χ0‖∞ ≤ ‖Πk − L‖∞‖χ0‖∞ ≤ C‖χ0‖∞km2−1|λ2|k,

but since
∑n4

l=1 χ0(l) = 0, we have that Lχ0 = 0, and

‖E[vk+1v
T
k+1]‖∞ ≤ ‖E[wkw

T
k ]‖∞ ≤ C‖χ0‖∞|λ2|k. After

realizing that ‖E[vk+1v
T
k+1]‖∞ ≥ 1

n2 (E[‖vk+1‖∞])2, the

result follows from some additional manipulations.

Remark 2: In our recent work [12], we have followed an

alternative approach to establish convergence of the ratio-

consensus algorithm that involves the use of coefficients of

ergodicity used in the analysis of non-homogeneous Markov

chains (see, e.g., [11]). This approach involves rewriting

(13)–(15) slightly differently, by defining Ak := Mk − Nk
(

instead of Ak :=Mk −Nk−1 as in (16)–(17)
)

. �

VI. CONCLUDING REMARKS

In this paper, we proposed and analyzed a method to

ensure resiliency of a linear-iterative distributed algorithm for

average consensus against unreliable heterogeneous commu-

nication links that may drop packets with generally unequal

probabilities. Asymptotic convergence of all nodes to average

consensus with probability one was established and a bound

on the rate of convergence was also obtained. Future work

will characterize convergence in the presence of unreliable

heterogenous communication links that can independently

drop packets following individual finite state Markov models.
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