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Abstract— We study the problem that arises in a class of
stochastic processes referred to as Stochastic Hybrid Systems
(SHS) when computing the moments of the states using the
generator of the process and Dynkin’s formula. We focus
on the case when the SHS is at equilibrium or approaching
equilibrium. We present a family of such processes for which
infinite-dimensional linear-system analysis tools are ineffective,
and discuss a few differing perspectives on how to tackle such
problems by assuming that the SHS state distribution is such
that its entropy is maximum. We also provide a numerical al-
gorithm that allows us to efficiently compute maximum entropy
solutions, and compare results with Monte Carlo simulations
for some illustrative SHS.

I. INTRODUCTION

This paper focuses on the analysis of a class of stochas-
tic processes known as Stochastic Hybrid Systems (SHS)
introduced, and extensively studied, by Hespanha (see,
e.g., [1]), who also showed that SHS are a subset of a more
general class of stochastic processes known as Piecewise-
Deterministic Markov processes [2]. SHS is a powerful
modeling and analysis formalism that has been used in many
engineering and science domains, including: networked con-
trol systems [3], power systems [4], system reliability theory
[5], and chemical reaction dynamics [6].

The state space of an SHS is comprised of a discrete state
space and a continuous state space. We refer to the pair
formed by these two as the combined state space of the SHS.
The transitions amongst the discrete states are random, and
the rates at which these transitions occur are allowed to be
a function of time and the continuous state. For any fixed
value of the discrete state, the evolution of the continuous
state is described by a stochastic differential equation (SDE).
Moreover, whenever the discrete state changes, the continu-
ous state is allowed to change discontinuously, and there is
a reset map that defines the relation between pre- and post-
transition states.
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A full understanding of an SHS would include obtaining
the distribution of the combined state as a function of time;
however, this is an intractable problem in general. In fact,
only in a few special cases can this problem be solved.
For instance, if the transitions amongst discrete states is
independent of the continuous state, the evolution of the
former is described by a continuous-time Markov chain, the
solution of which is fully characterized by the Chapman-
Kolmogorov equations. However, if these transitions depend
on the continuous state, it is typically impossible to write
down an exact distribution; thus, in this paper we settle
for a method that allows the computation of any arbitrary
number of its moments, as in [5]. To this end, we utilize the
generator of the stochastic process and Dynkin’s formula to
obtain a differential equation describing the evolution of the
expectation of any function of the combined state. [This is
possible as long as such a function is in the domain of the
extended generator [1], [5].]

Following [1], it can be shown that under certain weak
hypotheses, monomials are always in the domain of the
generator, and thus Dynkin’s formula holds. Furthermore,
for an SHS where (i) the vector fields defining the SDEs,
(ii) the transition rates among discrete states, and (ii) the
reset maps are polynomial, the extended generator maps
the set of monomials to itself. Thus, Dynkin’s formula
yields a closed set of ordinary differential equations (ODEs),
which describes the evolution of the value of each moment.
Unfortunately, since there are infinitely many monomials,
the approach outlined above produces an infinite-dimensional
system of ODEs in what is commonly referred to in the
applied mathematics literature as a moment closure problem.

In this paper, we focus on the moment closure problem
in polynomial SHS at equilibrium, with special emphasis on
the study of what we refer to as the one-state, one-reset,
one-dimensional SHS. [By focusing on this system, we can
clearly illustrate the challenges in the analysis, but we do not
see any fundamental limitation that would prevent extending
our proposed analysis approach to multi-state and multi-
reset systems.] For this system, we formulate the moment
flow equations, which result in an infinite-dimensional linear
system of ODEs; however, it turns out, infinite-dimensional
linear system theory tools (see, e.g., [7]) are not suitable
to analyze the actual behavior of the moment dynamics. In
particular, one can show that this infinite-dimensional system
of ODEs have, at least formally, infinitely many solutions—
yet only one of these corresponds to the actual solution of
the stochastic process.



The key feature of our approach is to assume that the SHS
invariant distribution is such that its entropy is maximized
under the constraints imposed by Dynkin’s formula applied
to the family of all monomials; this allows us to obtain a
solution to the moment closure problem. In this regard, we
propose a numerical algorithm that allows us to efficiently
compute the maximum entropy solution, and showcase it via
several numerical simulations involving the one-state, one-
reset, one-dimensional SHS, and other polynomial SHS.

The moment closure problem in SHS was also tackled
by Hespanha in several of his papers (see, e.g., [1], [6]),
which inspired our work; however, the focus of Hespanha’s
work was to develop moment closures that are valid on
compact time intervals. Specifically, he showed that for a
compact time interval, the solution to the infinite-dimensional
ODE can be approximated up to arbitrary precision by the
solution of a finite-dimensional, but nonlinear, ODE. This
finite-dimensional nonlinear ODE is obtained by truncating
the infinite-dimensional ODE, and then using normal form
theory to relate the missing higher-order moments to the
extant lower-order moments; this a fortoriori provides a so-
lution to the moment closure problem. On the other hand, we
focus on the moment closure problem of SHS at equilibrium,
i.e., in the limit as time goes to infinity; thus, the goal here
(and the solution technique) is very different from that in
Hespanha’s work.

The maximum entropy approach that we describe here
has been tried for moment closure problems by various
researchers in various problem settings (see, in particu-
lar, [8], [9]). Specifically, [8] aimed at approximating
high dimensional joint distributions of stochastic systems,
given the knowledge of the marginal ditribution on some
subsystems; [9] proposed a Newton-Raphson method based-
algorithm to solve the optimization problem arising from a
maximum entropy assumption. In contrast, our approach is
to use the constraints arising from the equations themselves
to identify the unique distribution.

The remainder of this paper is organized as follows. In
Section II, we provide a brief overview of SHS and introduce
the moment closure problem. In Section III, we formulate
and analyze the moment flow behavior for a particular
SHS, and introduce an entropy-based method to tackle the
moment closure problem. Several numerical examples that
illustrate the effectiveness of the approach are presented in
Section IV. Concluding remarks and directions for future
work are described in Section V.

II. PROBLEM FORMULATION

In this section, we define an SHS and derive its generator.
This paper concentrates on polynomial SHS, i.e., SHS where
all the rates, flows, and resets are polynomial functions
of the state variables—thus Dynkin’s formula yields an
infinite-dimensional system of ordinary differential equations
(ODEs) that describes the evolution of the moments of
the system. We point out that this leads generically to a
moment closure problem, since the flow cannot be faithfully
represented by any finite-dimensional truncation.

A. SHS Definition

Let Q be a countable set of discrete states and P a
continuous state space. The general idea of an SHS is that in
each small time interval dt, the system jumps from discrete
state q to discrete state q′ with probability λq,q′(x, t)dt;
when this jump occurs, the continuous state is reset to
ψq,q′(x, t). If the system does not jump, then it stays in
state q, and x evolves according to a stochastic differential
equation (SDE) associated to the discrete state q. The precise
definition is given below:

Definition 1. A stochastic hybrid system (SHS) is a quintu-
ple (Q,P,Λ,Ψ,F) where

• Q is a countable set of discrete states;
• P is the continuous state space with d dimensions,

typically taken to be Rd;
• Λ = (λq,q′)q,q′∈Q is a collection of transition rate

functions λq,q′(x, t) with λq,q′ : P × [0,∞)→ R+;
• Ψ = (ψq,q′)q,q′∈Q is a collection of reset maps x 7→
ψq,q′(x, t) with ψq,q′ : P × [0,∞)→ P;

• F is a collection of stochastic differential equations,
describing the dynamics of continuous state x ∈ P in
any discrete state q ∈ Q, as

d

dt
x(t) = fq(x, t) + gq(x, t)ṅ,

where n is a vector of independent Brownian motion
processes.

For the purposes of this paper, we will assume the state
dynamic evolution in each discrete state is governed by
ODEs, i.e., gq(x, t) = 0. Moreover, we assume that the
system is stationary, i.e., fq , λq,q′ , and ψq,q′ do not depend
explicitly on time.

B. Generator and Moment Flow Equation

Let h : Q×P → R be bounded and continuously differen-
tiable with respect to its second argument (we will call such
a function an observable). Define Lh by

Lh(q, x) := lim
ε→0

E[h(Qt+ε, Xt+ε)|Qt = q,Xt = x]− h(q, x)

ε
.

It is not hard to see that L is then a linear operator on
the space of observables, and by pushing definitions around,
we also obtain the formula commonly known as Dynkin’s
formula:

d

dt
E[h(Qt, Xt)] = E[Lh(Qt, Xt)]. (1)

We can then extend the domain of definition of L to include
all h such that (1) holds, and one can show that, under mild
conditions on Λ, Ψ, and F , this extended domain contains
all polynomials and indicator functions (see [2] for details).

For the SHS defined above, we can explicitly compute

Lh(q, x) = fq(x) · ∇xh(q, x)

+
∑
q′∈Q

λq,q′(x)(h(q′, ψq,q′(x))− h(q, x)).



We see that if fq , λq,q′ , and ψq,q′ are polynomials in x, then
L maps polynomials to polynomials.

If we denote hmq (q′, x) = xmδq,q′ , then Lhmq is a
polynomial, and thus a (finite) linear combination of hm

′

q′ ,
therefore (1) is equivalent to an (infinite-dimensional) set of
ODEs on the functions E[hmq ]. The interpretation of E[hmq ]
is that it is the mth moment of the continuous state x,
conditioned on the system being in discrete state q.

C. The Moment Closure Problem

While we are able to obtain a family of ODEs from (1),
this system is in general infinite-dimensional. Moreover, it is
not hard to see that under certain conditions, this system is
irreducibly infinite-dimensional. For example, if the degree
of any fq is greater than one, or the degree of any of the
λq,q′ or ψq,q′ is positive, then the degree of Lhmq is higher
than that of hmq . This implies that the dynamics of any given
moment is a function of some higher-order moments, and
thus no finite truncation can be exact.

Following standard probability theory terminology, we call
this a moment closure problem, since the evolution of any
finite set of moments depends on a larger set of moments.
To understand the dynamics of any one moment, we must
consider the flow of infinitely many other moments.

III. ANALYSIS

To clearly illustrate and analyze the moment closure
problem, we will focus on what we call the one-state, one-
reset, one-dimensional SHS; namely, we assume that Q,Λ,Ψ
each have exactly one element, and P = R. We note that
there is no conceptual barrier to extending these methods
to multi-state and multi-reset systems (see e.g., [3]–[6] for
examples of such systems).

In this section, we will formulate the moment flow equa-
tions for this class of SHS and analyze the moment flow
behavior. Then, we introduce the maximum entropy conjec-
ture, based on which, we propose a method to approximate
the steady-state distributions and statistics by solving a set
of algebraic equations.

A. Moment Flow Analysis

Since there is only one state and one reset, in subsequent
developments, we drop the notational dependence on the
state q. We now consider the SHS that results from the
following assumptions:
A1. f(x), λ(x) are polynomials of degrees df , dλ, respec-

tively, λ(x) =
∑dλ
n=0 λnx

n, f(x) =
∑df
n=0 fnx

n and
df ≤ dλ;

A2. λ(x) > 0 for x > 0;
A3. ψ(x) = γx with γ ∈ [0, 1]; and
A4. f0 = 0, f1 > 0.
Assumption A4 sets the minimum degree of all terms in
f(x) to be 1. With Assumption A1, we allow for f(x) to
be superlinear, which may lead to finite-time blowup on its
own; but we require that the reset rate λ(x) grows at least
as fast as f(x).

Then, the generator of the resulting SHS under Assump-
tions A1-A4, becomes

Lh(x) = f(x)
d

dx
h(x) + λ(x)(h(γx)− h(x)). (2)

For the dynamics of the state statistical moments, we define
the test function h(m)(x) := xm and the state moments
µm := E[Xm

t ] = E[h(m)(Xt)]. Then plugging this test
function into (2), we obtain

Lh(m)(x) =
f(x)

x
mh(m)(x) + λ(x)(γm − 1)h(m)(x). (3)

With f0 = 0, the right-hand side of (3) is a polynomial with
all its powers of, at least, order m. Then, from (1), we obtain
that the moment flow equations are:

d

dt
µm =

m+dλ∑
l=m

Cm,lµl, (4)

where

Cm,m+l = mfl+1 + (γm − 1)λl, 0 ≤ l < df ,

Cm,m+l = (γm − 1)λl, df ≤ l ≤ dλ,
from where we see that Cm,m+dλ < 0 in general, and
Cm,m > 0 for m large enough.

Note that if we choose h(x) = x, then Lh(x) is a
polynomial whose largest coefficient is negative. Thus there
is a b with Lh ≤ −h + b1A, where A is a compact subset
of the positive reals, and the SHS has a unique invariant
measure to which all initial measures converge exponentially
quickly [10, Theorem 14.0.1].

Even though we know the system in (4) converges, the
moment closure problem remains if we are interested in
computing anything about the invariant measure. In this
regard, the steady-state solution of the system in (4), defined
as µ̃m, satisfies the (infinite) family of linear equations

m+dλ∑
l=m

Cm,lµ̃l = 0, (5)

or equivalently,

µ̃m+dλ = − 1

Cm,m+dλ

m+dλ−1∑
l=m

Cm,lµ̃l,

but we see that this system is underdetermined, and has dλ
degrees of freedom unresolved. Thus, if λ(x) is non-constant,
then (5) has infinitely many solutions.

B. Maximum-Entropy Method
From the discussion above, it is clear that the constraints

imposed by (5) do not completely determine the moments at
equilibrium of the SHS that results from Assumptions A1-
A4. The natural conjecture to make in this case is that
the equilibrium distribution of the stochastic process is the
maximum entropy distribution under these constraints. Next,
we formalize this idea and propose an algorithm to compute
such a maximum entropy distribution efficiently. Then, by
comparing with Monte Carlo simulations, we provide evi-
dence that this approach provides the correct answer for a
wide variety of illustrative cases.



1) Maximum Entropy Conjecture: Our conjecture is that
the equilibrium distribution of the SHS is the maximum
entropy distribution in the class of all distributions the
moments of which satisfy (5). Thus, we can cast the problem
of finding this distribution as an optimization problem.

Denote the random variable in steady-state X∞ as X for
short, and define the distribution function of X as pX(x).
Then, the reformulated problem can be presented as

pX(x) = − arg inf
p(x)

(∫
p(x) log p(x)dx

)
,

subject to

∫
p(x)dx = 1, (6)

m+dλ∑
l=m

Cm,l

∫
xlp(x)dx = 0, ∀m ∈ Z+. (7)

The objective function is the entropy of a probability distribu-
tion. The constraint in (6) guarantees the obvious condition
that the integration of the probability distribution is equal
to one, whereas the constraint in (7) is just the explicit
expression for (5).

Due to the infinite number of constraints, the problem is
still intractable; however, the reformulation as an optimiza-
tion problem can help us construct the distribution function
structure via its Lagrangian (see, e.g., [11]):

L =

∫
p(x) log p(x)dx

+ ν̃0

[∫
p(x)dx− 1

]
+

∞∑
m=1

ν̃m

[
m+dλ∑
l=m

Cm,l

∫
xlp(x)dx

]
.

Then, the necessary conditions for optimality are (see, e.g.,
[11], [12]):

log pX(x) + ν̃0 +

∞∑
m=1

ν̃m

m+dλ∑
l=m

Cm,lx
l = 0, (8)

which can be written more compactly as

log pX(x)− ν0 −
∞∑
i=1

νix
i = 0, (9)

where the νi’s are linear combinations of the ν̃i’s. Then, by
rearranging (9), we obtain a distribution function pX(x) of
the form

pX(x) = c exp

( ∞∑
i=1

νix
i

)
, (10)

with c = exp ν0.
2) Moment Relation Using Integration by Parts: The

formula in (10) allows us to approximate the distribution
function by truncating up to order n:

pX(x) ≈ c exp

(
n∑
i=1

νix
i

)
. (11)

To estimate the νi’s, we evaluate the moments as functions
of these parameters. Then, by substituting into (5), we will
obtain a set of equations that can be used to calculate the
values of the νi’s. However, this method seems intractable,
due to the difficulty to find explicit formulas for the moment
functions being expressed by the νi’s. This difficulty can
be avoided by using the following lemma, which gives the
relationship among the moments of a random variable Z that
has the distribution function in (11).

Lemma 2. For a random variable Z with probability density
function

pZ(z) = c exp

n∑
i=1

νiz
i, (12)

it holds that:

kE[Zk−1] +

n∑
i=1

iνiE[Zi+k−1] = 0, ∀k ∈ Z+. (13)

The result of the lemma above can be proven using
integration by parts. First, for an arbitrary j ∈ Z+and
1 ≤ j ≤ n, write the (k+j−1)th moment of Z explicitly in
an integral form. Rewrite the integrand as a product of two
parts, the derivative of eνjz

j

and the rest. Then following the
integration by parts theorem, the (k + j − 1)th moment can
be expressed as a linear combination of other moments of
Z.

3) Calculation of Distribution Parameters: From the dis-
cussion in Section III-A, we know that the system has dλ
degree of freedom. Then, it follows that all the moments
can be expressed as linear combinations of the first dλ
moments. By plugging them into (13), we see that there are
n+dλ unknowns: n distribution function parameters and dλ
moments. Note that the scalar c does not appear in (13). By
varying k between 1 and n+ dλ in (13), we obtain n+ dλ
algebraic equations. Therefore, we are able to compute the
distribution function parameters as well as the statistics by
solving a set of algebraic equations.

We now show these calculations to completion, but for the
purposes of brevity, we only show them for the case where
all of the polynomials defining the SHS are linear, i.e.

f(x) = αx, λ(x) = βx, ψ(x) = γx. (14)

In this case, there is only one unresolved degree of freedom,
and (5) becomes

µ̃m+1 =
αm

β(1− γm)
µ̃m, (15)

from where we obtain that

E[Xm] = dmE[X], (16)

with

dm =

m−1∏
k=1

αk

β(1− γk)

=
(m− 1)!αm−1

βm−1(1− γm−1)(1− γm−2) · · · (1− γ)
, m ≥ 2.



Substituting (16) into (13) leads to

kdk−1E[X] +

n∑
i=1

iνidi+k−1E[X] = 0, k ∈ Z+, (17)

with d1 = 1 and d0 = (E[X])−1 for consistency. When
k = 1, we have

1 + ν1E[X(n)] + 2ν2d2E[X(n)] + · · ·+ nνndnE[X(n)] = 0,
(18)

where the subscript (n) indicates the approximation by
truncating up to order n. For k ≥ 2, every term in the
relations in (17) contains the mean E[X(n)]. Since E[X(n)] 6=
0, we can divide both sides of (17) by E[X(n)], which, after
rearrangement, results in a set of linear equations on the νi’s:

H̃nUn = D̃n, (19)

with Un = [ν1, ν2, · · · , νn]T collecting the distribution
parameters, D̃n = [−2,−3d2,−4d3, · · · , −(n+1)dn]T, and

H̃n =


d2 2d3 3d4 · · · ndn+1

d3 2d4 3d5 · · · ndn+2

d4 2d5 3d6 · · · ndn+3

...
...

...
. . .

...
dn+1 2dn+2 3dn+3 · · · nd2n

 ,

where the subscript indicates their dependency on the trunca-
tion order n. Assuming H̃n is invertible, then the distribution
parameters can be obtained as

Un = H̃−1n D̃n. (20)

4) Computing the Mean: Substituting (20) into (18) gives
us a way to directly calculate the mean as

E[X(n)] =
1

[1 2d2 3d3 · · ·ndn]Un

=
1

[1 2d2 3d3 · · ·ndn]H̃−1n D̃n

. (21)

Eventually, we obtain that

E[X(n)] =
1

DnH
−1
n D̃n

, (22)

where Dn = [1, d2, d3, · · · , dn], and Hn is a Hankel matrix:

Hn =


d2 d3 d4 · · · dn+1

d3 d4 d5 · · · dn+2

d4 d5 d6 · · · dn+3

...
...

...
. . .

...
dn+1 dn+2 dn+3 · · · d2n

 . (23)

Therefore, the true system steady-state mean is

E[X] = lim
n→∞

1

DnH
−1
n D̃n

. (24)
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Fig. 1: Pdf of single-state α-β-γ system.

5) Accuracy and Convergence: It seems difficult in gen-
eral to prove convergence directly by taking limits on both
sides of (22) since the matrices Dn, Hn and D̃n are
complicated (however, a special case is when the value of γ
is 0, which will be discussed further in Section IV-B). On
the other hand, we can prove indirectly that this limit exists:
first, a unique invariant distribution exists by the arguments
of Section III-A, and, moreover, it is not hard to see that this
distribution decays exponentially in x. From this, it follows
that if the invariant measure is equal to the one that results
from the maximum entropy conjecture as given in (10), then
the sequence of functions in (11) converges to the invariant
measure uniformly on any compact (in x) set. We will verify
numerically in all case studies below that this convergence
is accurate up to an arbitrary error.

IV. NUMERICAL EXAMPLES

In this section, we verify our proposed method by compar-
ing the solutions provided by the maximum entropy approach
with results obtained via Monte Carlo simulations. Several of
the cases that we show will be the linear version of the SHS
that was examined in detail in the previous section, mostly
because the class of all such systems can be parameterized
simply, and we show that the numerics check for all values
of the parameters. We also show that the approach works for
nonlinear systems as well.

In all cases, we compare the analytic solution of a trun-
cated maximum entropy method described above with the
results of a Monte Carlo simulation done on the SHS system
itself. Note that for the SHS defined by (14), from (22) or
dimensional analysis, we can view α/β as a scaling factor,
making γ the only free parameter.

A. Distribution Verification

In the first case, we set α = 1, β = 1, and γ = 0.5
in (10). The pdf of the invariant distribution obtained from
a 500,000-sample Monte Carlo simulation is depicted in
Fig. 1a as a benchmark. With the maximum entropy method,
the parameters defining the probability distribution function
(i.e., νi’s) can be estimated using (20). Then, by substituting
them back into (11), we obtain the pdf of the invariant
distribution. Figure 1a shows the approximate pdfs when
increasing the truncation order, n = 5, 10, and 15. As
the number of retained terms in the truncation increases,
the approximate pdf obtained via the maximum entropy
method approaches that obtained via Monte Carlo. When the
truncation order is fifteen, the approximate mean that results



from (22) is 1.4318, while that estimated via Monte Carlo
is 1.4307. The difference is within one standard deviation
(as obtained via Monte Carlo, yielding a value of 0.0012).
Similarly, the results for α = 1, β = 1, and γ = 0.7 are
shown in Fig. 1b. The mean estimated via the maximum
entropy approach with truncation order fifteen is 2.8637,
while a value of 2.8660 results from Monte Carlo, with the
standard deviation being 0.0026.

B. Sensitivity to Parameter γ
We fix the ratio of α and β to one, and vary γ from

0 to 1. The mean and second moment obtained via the
maximum entropy approach and via Monte Carlo simulations
are depicted in Fig. 2. In both figures, the two lines match
accurately, except when γ is close to 0 or 1. When γ = 0,
the mean obtained via maximum entropy is larger than that
obtained via Monte Carlo simulation. This is because the rate
of convergence of the solution obtained via (22) is quite slow
when γ ≈ 0. We can show that when γ = 0, and the ratio of
α and β is one, the approximate mean with truncation order
of n is calculated via (22) as

E[X(n)] =
1

1 +
∑n
i=1

1
i

,

where as n→∞, the mean converges to zero. However, the
convergence rate is only logarithmic.

C. Nonlinear Case Study
We set the state evolution equation to be ẋ = αx2; the

transition rate to be βx2 and the reset function to be γx. We
arbitrarily choose α = 1, β = 1, and γ = 0.7, and apply the
same procedure as for the linear SHS case study discussed
earlier. The only difference is that in this case, the mean does
not appear in the equations of the invariant distribution mo-
ments obtained by applying Dynkin’s formula. Subsequently,
the pdf function is constructed as

pX(x) = exp(ν0 + ν2x
2 + ν3x

3 + · · ·+ νnx
n),

where n is the truncation order and the linear term ν1x does
not appear.

The pdfs obtained by using the maximum entropy ap-
proach with truncation order being 18, and those obtained
via Monte Carlo simulations are depicted in Fig. 3, where
one can see that they match well. The mean obtained with the
maximum entropy approach is 2.2930, whereas that obtained
via Monte Carlo simulations is 2.2912. Again the mismatch
(i.e., 0.0018) is within one standard deviation as obtained via
Monte Carlo (i.e., 0.0023).
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(a) mean with respect to γ.
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(b) second moment with respect to γ.

Fig. 2: Moments with respect to γ.
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Fig. 3: pdf for a nonlinear case.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have analyzed the moment closure
problem that commonly arises in the class of polynomial
SHS. Special attention was given to the so-called one-state,
one-reset SHS, and we showed that this generically gives
rise to a moment closure problem.

We conjecture that this problem can be resolved by
considering the problem from a “maximum entropy” point
of view, based on which we can derive the formula of the
invariant distribution function. Then, we proposed a method
to approximate the distribution function parameters, as well
as the statistics; this method relies on solving a set of
algebraic equations. The maximum entropy method has been
verified by a set of numerical examples.

We believe that this maximum-entropy method can be
generalized to the analysis of multi-state multi-dimensional
systems, which we will investigate in future work.
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