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Abstract— In this paper, we propose a generation control
strategy for islanded lossless microgrids with inverter-interfaced
generators. In particular, we address the problem of obtaining
a desired active power load sharing while regulating the fre-
quency to some nominal value. The proposed control strategy is
based on the slow readjustment of the active power reference of
each inverter, i.e., each inverter aims to track a slowly-varying
reference that is set sufficiently close to the actual active power
injection, and, thus easy to track. The control enforces the
trajectory to satisfy the so-called phase-cohesiveness property,
i.e., the absolute value of the voltage phase angle difference
across electrical lines is smaller than π

2
, which ensures the

system remains stable at all times, while achieving the desired
active power load sharing. We also propose a method to find the
active power reference distributively which satisfies the phase-
cohesiveness property for tree networks as well as for some
cyclic networks.

I. INTRODUCTION

Generally, a collection of interconnected electrical loads
and generators is considered a microgrid if, compared with
the bulk power system, it has a substantially smaller physical
footprint, the generators have lower ratings, and it is able to
operate in an islanded mode (see, e.g., [1], [2]). The use of
microgrids has the potential to be an effective solution for
efficiently managing the increased penetration of Distributed
Energy Resources (DERs); however, there are several control
problems that must be addressed to ensure reliable and
economical operation of microgrids. In this paper, we address
one such problem; namely, the microgrid generation control
problem, with special emphasis on achieving active power
load sharing and frequency regulation.

The generation control problem in microgrids has been
extensively studied by other researchers. For example, in [3],
the authors propose a distributed controller that synchronizes
inverters, drives the frequency to the nominal value, and
achieves active power load sharing under small load pertur-
bations. In [4], the authors propose a distributed secondary
controller, the implementation of which is based on a lin-
earized microgrid model and a consensus-type distributed
algorithm, to eliminate frequency deviation that results from
the operation of the primary droop controller. In [5], the
authors present a distributed secondary controller which
computes the average of inverter frequencies; then, each
inverter uses a PI controller to drive this average frequency
to the desired value. In [2], the authors present a hierarchical
generation control architecture, and implement secondary
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and tertiary control using a distributed approach based on
the so-called ratio-consensus algorithm [6].

Although a substantial effort has been put into addressing
the generation control problem in microgrids, many issues,
including stability, synchronization and proper active power
load sharing, have not been completely resolved. Most
control designs in the literature are based on linearized
models, and can guarantee stability and good performance
only locally under small perturbations in the load (see,
e.g., [3], [4]). Moreover, because islanded microgrids often
lack enough rotating inertia to accommodate large load
perturbations (which occur because of a low load factor),
large frequency deviations might result, leading to instability
(see, e.g., [7], [8]). Several works approach this problem
by incorporating additional energy reserves to increase the
rotating inertia of the system (see, e.g., [8], [9]).

Our work in this paper aims to achieve frequency reg-
ulation and appropriate active power load sharing among
inverter-interfaced generators regardless of the size of the
load perturbations by designing appropriate controls. To this
end, we adopt the lossless Kuramoto-type inverter-based
microgrid model proposed in [10], and design a control
that enforces the absolute value of the voltage phase angle
difference across electrical lines to be strictly smaller than
π
2 —a property referred to as phase-cohesiveness (see, e.g.,
[10], [11]). This control guarantees global convergence to
the desired active power reference, and regulation of the
frequency to some nominal value. The reference is computed
distributively by solving a convex optimization problem that
enforces the phase-cohesiveness property. We illustrate the
operation of the proposed control via numerical simulations.
All results in lemmas and propositions are stated without
proofs.

II. PRELIMINARIES

In this section, we present the droop-controlled inverter-
based microgrid model adopted in this work, and formulate
the control objectives to be met.

A. Microgrid Dynamic Model

Consider a collection of droop-controlled inverters and
loads interconnected by a lossless network. The topology
of this network can be described by an undirected graph,
G = (V, E), with V = V(I)∪V(L), where V(I) = {1, . . . ,m}
denotes the set of nodes with an inverter, and V(L) =
{m + 1, . . . , n} denotes the set of nodes with a load; and
where E ⊆ V × V , with {i, j} ∈ E if nodes i and j are
electrically connected.



Let θi(t) and Vi(t) denote, respectively, the phase angle
and magnitude of the voltage at node i ∈ V , and define
θ(t) = [θ1(t), . . . , θn(t)]T and V (t) = [V1(t), . . . , Vn(t)]T.
Then, the active power injected into the network via node
i ∈ V is given by

Pi(θ(t), V (t)) =
∑
j∈V

Vi(t)Vj(t)Bij sin(θi(t)− θj(t)), (1)

with Bij = −bij , where bij < 0 is the susceptance of the line
connecting nodes i and j. Define a one-to-one map I : E →
R such that every e in the set {1, 2, . . . , |E|} is arbitrarily
assigned to exactly one edge {i, j} ∈ E , i.e., I({i, j}) = e.
Then, if we assign directions to each edge {i, j} arbitrarily,
e.g., i is taken to be the head and j the tail, we can define
a node-to-edge incidence matrix, M , as follows: for each
e = I({i, j}), Mie = 1, Mje = −1, and zero otherwise.
Then, (1) can also be written in matrix form as follows:

P (θ(t), V (t)) = MΓ(V (t))f(θ(t)), (2)

where P (θ(t), V (t)) = [P1(θ(t), V (t)), . . . , Pn(θ(t), V (t))]T,
Γ(V (t)) is a diagonal matrix with entries Γee(V (t)) =
Vi(t)Vj(t)Bij , e = I({i, j}), {i, j} ∈ E , and
f(θ(t)) = [f1(θ(t)), . . . , f|E|(θ(t))]

T with fe(θ(t)) =
sin(θi(t)− θj(t)).

Let ωi(t) denote the frequency at node i ∈ V at time t;
then, assuming the inverters implement a frequency-droop
controller (see, e.g., [3]), we have that, for each i ∈ V(I),

ωi(t) = ω∗ +D−1
i (P ∗i (t)− Pi(θ(t), V (t))), (3)

where ω∗ is some nominal frequency, Di > 0 is the droop
coefficient, P ∗i (t) is the active power reference of inverter
i ∈ V(I); and, for each j ∈ V(L),

0 = −`j(t)− Pj(θ(t), V (t)), (4)

where `j(t) > 0 is the active power demand at load j; `j(·)
is assumed to be a piecewise constant function.

In the remainder, we assume that voltage magnitudes are
fixed for all nodes, i.e., Vi(t) = Vi for each i ∈ V and all t;
thus, for brevity, we drop the V -argument from all functions
which depend on it. We also assume that after a change
in load, the controller is fast enough to restore the system
frequency to its nominal value before another load change
occurs; thus, we assume `i(t) and P ∗i (t) to be positive
constants, which we denote by `i and P ∗i , respectively.

We transform all inverter and load node voltage angles into
a rotating coordinate frame with frequency ω∗ by defining
θ̇i(t) = ωi(t) − ω∗ for i ∈ V . Then, by defining ui(t) :=
P∗i (t)−Pi(θ(t))

Di
for i ∈ V(I), we can rewrite (3) as follows:

θ̇i(t) = ui(t), i ∈ V(I). (5)

Then, if we define γij = ViVjBij , i, j ∈ V , and differentiate
(1) for all nodes i, we obtain that

Ṗ (θ(t)) = L(p)(θ(t))θ̇(t), (6)

where L(p)(θ(t)) is defined as follows: L
(p)
ij (θ(t)) =

−γij cos(θi(t) − θj(t)), i 6= j, i, j ∈ V , and L
(p)
ii (θ(t)) =

∑
l 6=i,l∈V

γil cos(θi(t) − θl(t)). The matrix L(p)(θ(t)) can be

partitioned as follows:

L(p)(θ(t)) =

[
L

(p)
I (θ(t)) L

(p)
IL (θ(t))

L
(p)
LI (θ(t)) L

(p)
L (θ(t))

]
, (7)

where L
(p)
I (θ(t)) ∈ R|V(I)|×|V(I)| and L

(p)
L (θ(t)) ∈

R|V(L)|×|V(L)|. Note that since we assume `j to be constant,
it follows from (4) that Ṗj(θ(t)) = 0, ∀j ∈ V(L). Then,
we can apply Kron reduction to (6) so as to eliminate the
equations corresponding to load nodes, obtaining

Ṗ (I)(θ(t)) = S(θ(t))θ̇(I)(t), (8)

where P (I)(θ(t)) = [P1(θ(t)), . . . , Pm(θ(t))]T, θ(I)(t) =
[θ1(t), . . . , θm(t)]T, and S(θ(t)) denotes the Schur com-
plement of L(p)(θ(t)), i.e., S(θ(t)) = L

(p)
I (θ(t)) −

L
(p)
IL (θ(t))(L

(p)
L (θ(t)))−1(θ(t))L

(p)
LI (θ(t)), where L

(p)
L (θ(t))

is invertible for all t since the controller we propose in Sec-
tion III enforces the so-called phase-cohesiveness property,
i.e., |θi(t) − θj(t)| ≤ ε, ∀{i, j} ∈ Ep, and ε ∈ [0, π2 ) [10];
θ(t) is referred to as phase-cohesive. Then, by combining
(5) and (8), the dynamics of the microgrid can be described
as follows:

θ̇(I)(t) = u(t),

Ṗ (I)(t) = S(θ(t))u(t), (9)

where u(t) = [u1(t), . . . , um(t)]T.
Note that if |θi(t) − θj(t)| < π

2 at any given time t,
∀{i, j} ∈ E , then, L(p)(θ(t)) is the weighted Laplacian of
graph G, and S(θ(t)) is positive semidefinite with a single
zero eigenvalue, the corresponding eigenvector of which
being the all-ones vector, 1I. Also, the second smallest
eigenvalue of S(θ(t)), denoted by λ2(S(θ(t))), is positive.

B. Control Objectives

Suppose that, before time t = t0, some substantial load
change occurs which results in (i) the frequency deviating
from its nominal value, and (ii) a mismatch between the ac-
tive power injections at the inverter nodes and the reference;
then, the main control objectives are:

O1 to track some desired injections, P ∗i , i ∈ V(I)
p , which

satisfy: (P1)
∑

i∈V(I)
p

P ∗i =
∑

l∈V(L)
p

`l, and (P2) ensure that

the resultant equilibrium point is phase-cohesive; and
O2 to eliminate the frequency deviation that results from

the load change, i.e., θ̇i(t)→ 0 as t→∞, i ∈ Vp.

Inverters typically share the active power demand of the loads
according to their power ratings P∗i

P∗j
= Di

Dj
= P i

P j
, i, j ∈ V(I),

where P i is the power rating of inverter i [3]. [Later, we
discuss how to pick the reference differently.]

For later developments, we also note that all stability-
related issues and notions are meant with respect to the
system model in (9), in which voltages are assumed to be
constant, and the objectives O1 and O2.



III. ACTIVE POWER LOAD SHARING CONTROL

In this section, we first propose a control strategy to
provide frequency regulation and to achieve the desired
active power load sharing among the inverters. Then, under
some assumptions, we show that this control ensures global
convergence of the active power injections to the desired
reference and eliminates the frequency error.

A. Controller Operation Description

Let P ∗i denote the desired power injected by inverter i,
and assume it satisfies P1 and P2 as stated in objective O1.
Then, if for the system in (9) we were to utilize a controller
of the form

u(t) = −α(P (I)(t)− P ∗), (10)

where P ∗ = [P ∗1 , . . . , P
∗
m]T and α > 0, it might be the case

that P (I)(t) may not converge to P ∗ as t→∞. In fact, the
system might become unstable, since the phase-cohesiveness
property might be violated at some time and, as a result,
the matrix S(θ(t)) might not be always positive-semidefinite
with a single zero eigenvalue. However, we can enforce the
phase-cohesiveness property at all times if we modify the
controller in (10) by replacing P ∗ with a piecewise constant
reference signal, P r(t) = [P r1 (t), . . . , P rm(t)]T, based on the
following observation to be proved later: when, at some t =
τ , the reference P r(t) is fixed to some constant value, for
t ≥ τ , within some δ > 0 of the actual power injections at
inverter nodes, i.e., ‖P (I)(τ)− P r(τ)‖2 ≤ δ, the controller

u(t) = −α(P (I)(t)− P r(t)) (11)

drives P (I)(t) − P r(t) → 0 as t → ∞, while main-
taining the phase-cohesiveness property at all times. When
‖P (I)(t) − P r(t)‖2 becomes very small, we move the ref-
erence P r(t) closer to the desired injection value P ∗ along
the line connecting initial active power injections P (θ(t0))
and the reference P ∗, and apply control in (11). This slow
readjustment of P r(t) continues until we reach P ∗. We show
later that picking P r(t) that way allows us to maintain the
phase-cohesiveness property for all time t.

More formally, after a substantial load change occurs, we
trigger the controller at t = t0 by choosing the reference
value, P r(t), for t ≥ t0, as follows:

P r(t) = (1− λ(t))P (I)[t0] + λ(t)P ∗, (12)

where, for t = τ , P (I)[τ ] := P (I)(θ(τ)), and λ(t) = λ(t−0 )+
∆λ, with

∆λ =
δ − δ

√
m

‖P ∗ − P (I)[t0]‖2
, (13)

and λ(t−0 ) = 0. When for some t = t1, P (I)[t−1 ] is such that
‖P (I)[t−1 ]−P r(t−1 )‖∞ ≤ δ, we again increase λ(t) by ∆λ:

λ(t) = λ(t−1 ) + ∆λ, t1 ≤ t,

and use the expression in (12) to update the reference value.
By denoting tk as the reference update time for which
t−k = argt>tk−1

‖P (I)(θ(t)) − P r(t)‖∞ ≤ δ, P r(t) can be

expressed in a more general form as follows:

P r(t) = (1− λ(t))P (I)[t0] + λ(t)P ∗, tk ≤ t < tk+1,
(14)

where
λ(t) = λ(t−k ) + ∆λ, tk ≤ t < tk+1. (15)

In a more compact form, (14) – (15) can be rewritten as
follows:

P r(t) = P r(t−k ) + ∆P r, tk ≤ t < tk+1, (16)

where ∆P r = (δ−δ
√
m) P∗−P (I)[t0]
‖P∗−P (I)[t0]‖2

, with ∆P ri denoting
the i-th component of ∆P r; thus, at each t = tk, we move
P r(t) closer to P ∗ along the line connecting P (I)[t0] and
P ∗. [Note that if at some time t, ‖P (I)(θ(t)) − P ∗‖ < δ,
then, we set λ(t) to 1 and P r(t) to P ∗.]

In order to preserve the phase-cohesiveness property for
all t ≥ t0, P (θ(t)) needs to satisfy the following synchro-
nization condition for all t ≥ t0 [10]:

‖MTL†P (θ(t))‖∞ ≤ sin ε, (17)

where L† is the pseudoinverse of L = [Lij ], with Lij =
−γij , i 6= j, i, j ∈ V , and Lii =

∑
l 6=i,l∈V

γil.

Define P [tk] := P (θ(tk)) and ` = [`m+1, . . . , `n]T. Later,
we show that the synchronization condition given in (17) is
always satisfied by the controller in (11) provided P [t0] and[
P ∗

−`

]
satisfy a more strict version of the synchronization

condition in (17), given by

‖MTL†P (θ(t))‖∞ ≤ κ sin ε, (18)

for some κ ∈ (0, 1); specifically, in the next section, we will
establish that we need to pick

δ =
1− κ
η

sin ε, (19)

where η = ‖MTX‖∞, where X is a submatrix of L† formed
from its first m columns, and

κ =
1

sin ε
max

{
‖MTL†P [t0]‖∞,

∥∥∥∥MTL†
[
P ∗

−`

]∥∥∥∥
∞

}
.

(20)

B. Stability Analysis

Here, we prove that, for a certain δ, the phase-cohesiveness
property is always preserved by the controller (11) with

the reference in (16), provided that P [t0] and
[
P ∗

−`

]
satisfy

(18). In order to prove this result, we need the result in the
following lemma.

Lemma 1. Suppose θ(t0) is phase-cohesive, and P (θ(t)) is
continuous and satisfies the synchronization condition in (17)
for all t ≥ t0. Then, θ(t) is phase-cohesive, unique and
continuous for all t ≥ t0.

Now, we state the main stability result.



Proposition 1. Suppose that P [t0] and
[
P ∗

−`

]
satisfy (18),

and θ(t0) is phase-cohesive. Then, if δ satisfies (19), the
controller in (11) with the reference in (16) ensures that
the phase-cohesiveness property is maintained for all t, and
P (I)(θ(t))→ P ∗ as t→∞.

In the next lemma, we provide an upper bound on the time
it takes for the injections to converge to the desired reference
within a small error bound.

Lemma 2. Let t = T denote the time it takes for
P (I)(θ(t)) to converge to P ∗ within a small error bound,
i.e., ‖P (I)(θ(t)) − P ∗‖∞ ≤ δ

√
m. Assuming tk =

inf
t

argt>tk−1
‖P (I)(θ(t))− P r(t)‖∞ ≤ δ, we have that

T ≤ ‖P
∗ − P (I)[t0]‖2 + δ

√
m

αλ2(L)(δ − δ
√
m) cos(ε)

ln
δ

δ
√
m
. (21)

IV. ACTIVE POWER REFERENCE ASSIGNMENT

In this section, we discuss how to choose the active power
reference distributively for tree networks, as well as for those
networks that have non-overlapping cycles (any pair of cycles
does not share any common edge) so as to satisfy the phase-
cohesiveness property.

A. Tree Networks
Let P (0)

i denote the reference signal to inverter i ∈ V(I) as
determined by the load power sharing criterion in objective
O2, i.e., P ∗i = P

(0)
i := Di∑

j∈V(I) Dj

∑
l∈V(L) `l; next, we

discuss an alternative to this reference choice. To this end,
define the following quadratic optimization problem:

min
p,φ
‖p− p(0)‖22 + ‖φ‖22 (22)

subject to p = MΓφ, (23)
− κ0 ≤ φij ≤ κ0, ∀{i, j} ∈ E , (24)

P i ≤ pi ≤ P i, ∀i ∈ V, (25)

which we refer to as QP1, where P i = P i = −`i, i ∈
V(L), the constraint (23) is a flow balance constraint from
(2), (24) – (25) are the box constraints on the normalized
flows and power injections at each node, κ0 < sin ε is a
positive constant parameter, p ∈ Rn, p(0) = [p

(0)
1 , . . . , p

(0)
n ]T

with p(0)
i = P

(0)
i , i ∈ V(I), and p(0)

i = −`i, i ∈ V(L).
The solution of QP1, denoted by (p∗, φ∗), will be used

to assign the reference P ∗, i.e., P ∗ = [p∗1, . . . , p
∗
m]T, for

our controller in (11). By penalizing deviation of p from
p(0) in the cost function of QP1 in (22), we aim to preserve
the active power sharing among inverters according to their
power ratings. The second term in the cost function allows
us to minimize the flows along the electrical lines, which in
general results in an increase of the step δ and improvement
of the convergence rate of the controller in (11). Next, we
show how to solve QP1 distributively.

First, we reformulate QP1 by introducing additional vari-
ables and constraints, the goal of which is to obtain an
equivalent problem with a structure that is amenable to a
solution via the alternating direction method of multipliers
(ADMM); see, e.g. [12, Section 3.4]. To this end, introduce

variables φ(i)
ij and φ(j)

ij , and define x(i) = {φ(i)
ij }{i,j}∈E and

z(i) = {φ(i)
ji }{i,j}∈E . Then, clearly, QP1 is equivalent to the

following optimization problem:

min
p,x,z

‖p− p(0)‖22 + ‖x‖22

subject to ∀i ∈ V, pi =
∑
j∈N+

i

γijφ
(i)
ij −

∑
j∈N−i

γijφ
(i)
ji ,

P i ≤ pi ≤ P i,
∀{i, j} ∈ E ,−κ0 ≤ φ(i)

ij ≤ κ0,

− κ0 ≤ φ(j)
ij ≤ κ0,

φ
(i)
ij = φ

(j)
ij ,

which we refer to as QP2, where
x = [(x(1))T, . . . , (x(n))T]T, z = [(z(1))T, . . . , (z(n))T]T,

N+
i = {j : Mje = −1, e = I({i, j}), {i, j} ∈ E},

N−i = {j : Mje = 1, e = I({i, j}), {i, j} ∈ E}.
Then, the augmented Lagrangian for QP2 is given by

Lρ(p, x, z, µ, ν) =‖p− p(0)‖22 + ‖x‖22

+

m∑
i=1

µi(pi −
∑
j∈N+

i

γijφ
(i)
ij +

∑
j∈N−i

γijφ
(i)
ji )

+

m∑
i=1

ρ

2
(pi −

∑
j∈N+

i

γijφ
(i)
ij +

∑
j∈N−i

γijφ
(i)
ji )2

+
∑
{i,j}∈E

(
νij(φ

(i)
ij − φ

(j)
ij ) +

ρ

2
(φ

(i)
ij − φ

(j)
ij )2

)
,

where ρ > 0 is some constant, µ = [µ1, . . . , µn]T and
ν = [ν1, . . . , ν|E|]

T. To solve QP2, we apply ADMM, the
iterations of which are as follows:[

p[k + 1]
x[k + 1]

]
= min

(p,x)∈D
Lρ(p, x, z[k], µ[k], ν[k]), (26)

z[k + 1] = min
z∈D′

Lρ(p[k + 1], x[k + 1], z, µ[k], ν[k]), (27)

µi[k + 1] =µi[k] + ρ(pi[k + 1]−
∑
j∈N+

i

γijφ
(i)
ij [k + 1]

+
∑
j∈N−i

γijφ
(i)
ji [k + 1]), (28)

νij [k + 1] =νij [k] + ρ(φ
(i)
ij [k + 1]− φ(j)

ij [k + 1]), (29)

for all i ∈ V and {i, j} ∈ E , where

D = {(p, x) : P j ≤ pj ≤ P j , ∀j ∈ V,−κ0 ≤ φ(i)
ij ≤ κ0,

∀{i, j} ∈ E},

D′ = {z : −κ0 ≤ φ(i)
ji ≤ κ0, ∀(j, i) ∈ E}.

The iterations in (26) – (27) can be written for each node i
as follows:[

pi[k + 1]

x(i)[k + 1]

]
= min

(pi,x
(i))∈Di

(pi − p(0)i )2 + ‖x(i)‖22 + µi[k]pi

− µi[k]
∑
j∈N+

i

γijφ
(i)
ij +

ρ

2
(pi −

∑
j∈N+

i

γijφ
(i)
ij +

∑
j∈N−i

γijφ
(i)
ji [k])2

+
∑
j∈N+

i

(
νij [k]φ

(i)
ij +

ρ

2
(φ

(i)
ij − φ

(j)
ij [k])2

)
, (30)



z(i)[k + 1] = min
z(i)∈D′i

µi[k]
∑
j∈N−i

γijφ
(i)
ji −

∑
j∈N−i

νji[k]φ
(i)
ji

+
ρ

2
(pi[k + 1]−

∑
j∈N+

i

γijφ
(i)
ij [k + 1] +

∑
j∈N−i

γijφ
(i)
ji )2

+
∑
j∈N−i

ρ

2
(φ

(j)
ji [k + 1]− φ(i)

ji )2, (31)

where

Di = {(pi, x(i)) : P i ≤ pi ≤ P i,−κ0 ≤ φ(i)
ij ≤ κ0,

∀j ∈ N+
i },

and D′i = {z(i) : −κ0 ≤ φ(i)
ji ≤ κ0,∀j ∈ N−i }.

The iterations in (28) – (31) can be executed in a dis-
tributive fashion whereby each node i only needs to obtain
φ

(j)
ji [k + 1] from every j ∈ N−i , and φ(j)

ij [k + 1] from every
j ∈ N+

i by communicating with its neighbors. If QP1 is
feasible, then, by [13, Theorem 1], (26) – (29) converge
to the optimal phase-cohesive solution (p∗, φ∗, φ∗, µ∗, ν∗).
However, solving QP1 does not necessarily yield a phase-
cohesive solution if there are cycles in the network because
there might not exist a phase-cohesive θ∗ corresponding to
(p∗, φ∗) satisfying ∑

{l,j}∈Ci

(θ∗l − θ∗j ) = 0, (32)

where Ci is an oriented cycle in the network. Next, we
show how to deal with the case when the network has
non-overlapping cycles. To this end, we add an additional
constraint to QP1 which guarantees phase-cohesiveness for
the cyclic networks.

B. Networks with Non-Overlapping Cycles

Consider a network with c non-overlapping cycles denoted
by C1, . . . , Cc. Define N = [n(1), . . . , n(c)], where n(i)

satisfies Mn(i) = 0 and corresponds to cycle Ci so that,
for k = I({l, j}),

n
(i)
k =

 1 if {l, j} ∈ Ci,
−1 if {j, l} ∈ Ci,
0 else.

Then, for a given set of injections p, any solution of (2) can
be generally written as follows [10]:

φ′ = φ+ Γ−1Nµ, (33)

where φ is any particular solution to p = MΓφ, and µ ∈ Rc.
Assuming φij = −φji, ∀{i, j} ∈ Ep, define

µi(φ) = min
{l,j}∈Ci

γlj(κ0 − φlj), (34)

µ
i
(φ) = max

{l,j}∈Ci
γlj(−κ0 − φlj),

and gi(φ) =
∑

{l,j}∈Ci
arcsin(φlj). In order for p to have a

corresponding phase-cohesive θ, we must show that there
exists a µ ∈ Rc such that φ + Γ−1Nµ satisfies the box

constraints in (24) and the following constraint:

gi(φ+ Γ−1n(i)µi) = 0, i = 1, . . . , c, (35)

which is equivalent to satisfying the constraint in (32). By
using the single cycle feasibility lemma in [10], the following
result becomes obvious.

Lemma 3. Suppose (p, φ) satisfies all constraints of QP1 in
(23) – (25). Then, there exists a µ ∈ Rc such that φ+Γ−1Nµ
satisfies the box constraints in (24) and the constraint in (35)
if

gi(φ+ Γ−1n(i)µi(φ)) ≥ 0, and (36)

gi(φ+ Γ−1n(i)µ
i
(φ)) ≤ 0, i = 1, 2, . . . , c. (37)

Because the constraints in (36) – (37) are non-convex,
we obtain their inner convex approximation in the next
developments.

For some β ≥ 0, define

Fi(β) = {φ : gi(φ+ Γ−1n(i)µi(φ)) ≥ 0, µi(φ) ≥ β,
gi(φ+ Γ−1n(i)µ

i
(φ)) ≤ 0, µ

i
(φ) ≤ −β}.

Now, we state the following lemma.

Lemma 4. Suppose di is the number of edges in cycle Ci,
γi = max

{l,j}∈Ci
γljκ0, γ

i
= min
{l,j}∈Ci

γljκ0, ε0 = arcsin(κ0),

and ψi = ε0
di−1 . If

β∗i =
1

2
γi −

γ
i

2
sin(ψi), (38)

then, Fi(β∗i ) ≡ Bi, where

Bi = {φ : −κ0 +
β∗i
γlj
≤ φlj ≤ κ0 −

β∗i
γlj

,∀{l, j} ∈ Ci}.

By Lemma 4, if φ ∈ Fi(β∗i ), then, clearly φ also satisfies
the cycle constraints in (36) – (37); therefore, by Lemma 3,
there exists a µ ∈ Rc such that φ+ Γ−1Nµ satisfies the box
constraints in (24) and the constraint in (35).

For each cycle Ci, i = 1, . . . , c, in the network, choose
β∗i as in (38); then, we modify QP2 by enforcing additional
constraints of having φ ∈ Bi, i = 1, . . . , c:

min
p,x,z

‖p− p(0)‖22 + ‖x‖22

subject to ∀i ∈ V, pi =
∑
j∈N+

i

γijφ
(i)
ij −

∑
j∈N−i

γijφ
(i)
ji ,

P i ≤ pi ≤ P i,
∀{i, j} ∈ E ,−κ0 ≤ φ(i)

ij ≤ κ0,

− κ0 ≤ φ(j)
ij ≤ κ0, φ

(i)
ij = φ

(j)
ij ,

x, z ∈ Bk, k = 1, . . . , c,

which we refer to as QP3. Then, clearly as discussed above,
by Lemmas 3 – 4, the reference p∗, which results from
solving QP3, has a corresponding phase-cohesive θ∗, which



TABLE I: Simulation Test Model Parameters.

[Pbase, P 1, P 2, P 3], 1
2π

∆ωmax [4, 6, 3, 3] MW, 1 Hz

[Bbase, B14, B25, B38, B17, B45] [4, 3, 3, 3, 2.5, 1.2] Ω−1

[B46, B56, B78, B89, B79] [1.3, 1, 1.4, 1, 1.2] Ω−1

[Vbase, Vi, ∀i ∈ V(I), Vl, ∀l ∈ V(L)] [1, 1, 0.96] kV

TABLE II: Comparison between P ∗ and P (0) after a load
change at t = 0.6 s.

‖ε‖ ‖φ‖ κ δ ∆λ

P ∗ π
2
− 0.01 1.8388 0.7782 0.0278 0.2623

P (0) π
2
− 0.01 2.3308 0.8090 0.0239 0.2410

satisfies the cyclic constraints in (32). Define

Hi = {(pi, x(i)) : P i ≤ pi ≤ P i,−κ0 ≤ φ(i)
ij ≤ κ0,

∀j ∈ N+
i , x

(i) ∈ Bk,∀k},
H′i = {z(i) : − κ0 ≤ φ(i)

ji ≤ κ0,∀j ∈ N−i ,
z(i) ∈ Bk,∀k}.

The ADMM iterations for QP3 are the same as in (28) –
(31) except that instead of the sets Di and D′i, Hi and H′i
are used as constraint sets for (pi, x

(i), z(i)). Since Hi and
H′i are merely box constraints, then, projection onto each of
these sets is easy to compute.

V. NUMERICAL EXAMPLE

Consider a 9-bus lossless microgrid, the topology of which
is shown in Fig. 1a. Nodes G1, G2, and G3 correspond to
inverters, with the remaining nodes corresponding to loads.
The model parameters of the network are given in Table I.
Maximum allowable frequency deviation ∆ωmax

2π was chosen
to be 1 Hz. Figure 1 shows the performance of the proposed
control strategy for large load perturbations at t = 0.6 s,
4.6 s and 8.6 s. After each load perturbation, we are able to
achieve the desired active power load sharing and regulate the
frequency ωi

2π at each inverter to the desired frequency value
of 60 Hz. In order not to violate the maximum allowable
frequency deviation, the upper bound on the feedback gain
α was calculated as follows: α ≤ ∆ωmax

δ = 2π
δ .

Controller parameters are given in Table II. Since κ < 1
throughout the whole operation of the controller, P ∗ was
always feasible by the synchronization condition given in
(18). We also chose δ = 0.005 such that δ

√
m < δ for m =

3. Because QP2-based reference P ∗ minimizes the flows, the
normalized flow φ and κ are typically smaller for P ∗ than
for P (0) as also shown in Table II, which further gives larger
δ and ∆λ and improves the convergence rate. As implied by
(21), it is desirable to have larger ∆λ and smaller κ in order
to increase the convergence rate. The convergence speed can
also be improved if we increase δ, while satisfying δ

√
m <

δ, as established in (21) and confirmed by the numerical
simulations.
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Fig. 1: (a) 9-bus microgrid topology, (b) P (I)
2 (t) and ω2(t)

2π .

VI. CONCLUDING REMARKS

We presented a control strategy which allows inverter-
interfaced generators in a microgrid to track globally some
desired active power reference, and to restore the frequency
to its nominal value by ensuring that the phase-cohesiveness
property is always maintained. Even when large load per-
turbations initially set the actual active power injections far
from the desired references, the proposed controller always
achieves tracking if the initial injections and the references
strictly satisfy the phase synchronization condition.

REFERENCES

[1] D. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart
Grid, vol. 5, no. 4, pp. 1905–1919, 2014.

[2] S. Cady, A. Domı́nguez-Garcı́a, and C. Hadjicostis, “A distributed
generation control architecture for islanded ac microgrids,” IEEE
Trans. Control Syst. Technol., vol. 23, no. 5, pp. 1717–1735, 2015.

[3] J. Simpson-Porco, F. Dörfler, and F. Bullo, “Synchronization and
power sharing for droop-controlled inverters in islanded microgrids,”
Automatica, vol. 49, no. 9, pp. 2603–2611, 2013.

[4] A. Bidram et al., “Frequency control of electric power microgrids
using distributed cooperative control of multi-agent systems,” in Proc.
IEEE Conf. Cyber Technol. in Automat., Control and Intell. Syst., May
2013, pp. 223–228.

[5] Q. Shafiee, J. Guerrero, and J. Vasquez, “Distributed secondary control
for islanded microgrids - a novel approach,” IEEE Trans. Power
Electron., vol. 29, no. 2, pp. 1018–1031, Feb. 2014.

[6] A. Domı́nguez-Garcı́a, S. Cady, and C. Hadjicostis, “Decentralized
optimal dispatch of distributed energy resources,” in Proc. IEEE Conf.
Decision and Control, Dec. 2012, pp. 3688–3693.

[7] T. Vandoorn et al., “Microgrids: Hierarchical control and an overview
of the control and reserve management strategies,” IEEE Ind. Electron.
Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013.

[8] J. Driesen and K. Visscher, “Virtual synchronous generators,” in Proc.
IEEE Power and Energy Soc. Gen. Meeting, Jul. 2008, pp. 1–3.

[9] K. Sakimoto et al., “Stabilization of a power system with a distributed
generator by a virtual synchronous generator function,” in Proc. IEEE
Int. Conf. Power Electron., May 2011, pp. 1498–1505.

[10] F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex
oscillator networks and smart grids,” Proc. Natl. Acad. Sci. U.S.A.,
vol. 110, no. 6, pp. 2005–2010, 2013.

[11] N. Ainsworth and S. Grijalva, “A line weighted frequency droop
controller for decentralized enforcement of transmission line power
flow constraints in inverter-based networks,” in Proc. IEEE Power and
Energy Soc. Gen. Meeting, Jul. 2013, pp. 1–5.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Prentice Hall, 1989.

[13] J. F. Mota et al., “A proof of convergence for the alternating direction
method of multipliers applied to polyhedral-constrained functions,”
arXiv preprint arXiv:1112.2295, 2011.


