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Abstract

Frequency regulation is becoming increasingly impor-
tant with deeper penetration of variable generation re-
sources. Flexible loads have been proposed as a low-
cost provider of frequency regulation. For example, the
flexibility of loads with inherent thermal energy storage
resides in their ability to vary their electricity consump-
tion without compromising their end function. In this
context, the aggregate flexibility of a collection of diverse
residential air-conditioning loads has previously been
shown to be well modeled as a virtual battery using first
principles load models. This analytical method will not
scale to more complex flexible loads such as commercial
HVAC systems. This paper presents a method to identify
virtual battery model parameters for these more complex
flexible loads. The method extracts the parameters of
the virtual battery model by stress-testing a detailed soft-
ware model of the physical system. Synthetic examples
reveal the effectiveness of the proposed identification
technique.

1. Introduction

The deep penetration of renewable energy resources and
the massive integration of intelligent communication
and control devices is transforming the structure and
functionality of electric power systems. One of the
challenges in integrating renewable-based generation
resources, and the corresponding decrease in conven-
tional generation, is the increased need for frequency
regulation [1]. Instantaneous imbalance between power
supply and demand causes the system frequency to de-
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viate from its nominal value. This deviation must be
kept to a minimum for proper operation of many devices.
Generators provide frequency regulation by adjusting
their generation according to a signal sent from the sys-
tem operator. Loads can also provide this service by
adjusting their consumption as needed. Furthermore,
many loads can modify their consumption more quickly
than conventional generators, which makes them ideal
for providing this service.
Within the context above, many recent papers have fo-
cused on the use of small residential loads with the ability
to store thermal energy [2], [3], [4], [5]; we call these
thermostatically controller loads (TCLs) because they in-
corporate a thermostat that simply switches them on and
off based on measured temperature. Commercial build-
ings are another load with the ability to store thermal
energy and the flexibility to provide frequency regula-
tion [6]. The HVAC systems of these buildings typically
have a much larger control input space. For example,
through the use of dampers or variable frequency drives,
air flow and power consumption can be continuously
varied within some limits. The fact that these buildings
can be quite large in terms of both power consumption
and thermal mass, combined with the ability to continu-
ously vary the power consumption, could eliminate the
need to aggregate them with other similar loads; this
simplifies the communication and control with remote
devices, although the local control to be implemented is
more complex.
In order for a building to provide regulation, it must
have a controller which can utilize the flexibility of the
load to follow a regulation signal. To this end, we de-
sign a controller, the sole function of which is to do this
while respecting occupant comfort constraints and equip-
ment ratings. We note that the HVAC control system
design may have other objectives, such as total energy
cost minimization [7]. A natural extension of our pro-
posed controller would balance minimizing energy costs
with maximizing income from the regulation market to
minimize total costs.



Beyond designing the controller described above, in this
paper we are interested in quantifying the flexibility of
commercial buildings. Flexibility is defined as accept-
able perturbations to baseline power, which is the power
the building would have consumed were it not provid-
ing the regulation service. The details of flexibility and
baseline power would be calculated based on the rules of
the relevant electricity markets. Our tool for quantifying
flexibility of loads is the virtual battery, which is a sim-
ple, succinct, and well understood model. The authors
of [2] demonstrate the power of this model to describe
the aggregate flexibility of a collection of TCLs. In this
paper, we show that the virtual battery model has the
power to capture the flexibility of more complex loads,
and provide a method to identify its parameters.
Our proposed method for identifying the parameters of
the virtual battery model requires a detailed model of the
building being studied and its HVAC control system. We
use this model to perform software-based tests to deter-
mine equivalent battery parameters; these tests stress the
system by issuing carefully selected commands to the
controller. By noting which commands cause the con-
troller to fail and at what time, our method can deduce
how the real system will react to certain inputs; this is
useful to determine how much frequency regulation can
be offered in the market.
There is a small amount of literature in which techniques
related to ours have been suggested. For example, in [8],
charge rate limits and capacity parameters are identified
for a collection of TCLs; our proposed method improves
upon this technique in two ways. First, we identify
the parameters in terms of a more accurate model that
includes dissipation. Second, we do not rely on the
ability to command a load to consume a maximum or
minimum possible power. Although this may be simple
for a collection of TCLs, it is not clear this can be done
for more complicated systems.
The remainder of the paper is organized as follows. In
Section 2 we introduce the model of the HVAC test
system used in all the case studies, and formulate our
proposed controller. In Section 3 we will formulate the
problem of identifying the parameters of the virtual bat-
tery model describing the flexibility of the HVAC system.
In Section 4 we present the algorithms we will use to
solve the identification problem. Section 5 presents the
results of our procedure on the test system. Concluding
remarks are presented in Section 6.

2. Dynamic Model and Control

In this section, we introduce the HVAC model of the
system used in this work and formulate a controller that
enables the use of this system for frequency regulation.

2.1. HVAC System Model

In order to describe the behavior of the building HVAC
system, we will adapt a variable air volume with reheat
model; the formulation is borrowed from [7]. We will
not include heating coils in the formulation as they are
typically powered by gas. If these coils were being
utilized, no electric power would be consumed, thus
the overall electric power usage could not be reduced.
Also, electric power consumption could be increased by
turning on the AC, but this would be wasteful from an
energy perspective.
Let Tz denote the vector of building zone temperatures,
and let ṁz denote the vector of mass flow rates of cooled
air into each zone. Also, let dr denote the fraction of
return air that is recycled into the system, and let Tc
be the cooling coil outlet air temperature. Additionally
let Q̇offset be the vector of thermal loads independent of
zone temperatures. Then, the dynamics of the system
can be described by

M
d
dt

Tz(t) =RTz(t)+ Q̇offset(t)

+ cpṁz(t).∗(1Tc(t)−Tz(t)), (1)

where 1= [1, . . . ,1]T , .∗ denotes an elementwise prod-
uct, M is a diagonal matrix of thermal capacitances asso-
ciated with each building zone, R is a matrix of thermal
resistances associated with each building zone, and cp is
the specific heat capacity of air.
Additional variables relate the dynamics in (1) to the
electric power consumed by the HVAC system. Specifi-
cally, the electric power consumed by the supply fan, Pf ,
is given by

Pf (t) = κ f
(
1T ṁz(t)

)2
, (2)

and the electric power consumed by the cooling coils,
Pc, is given by

Pc(t) =
cp

ηh
1T ṁz(t)(Tm(t)−Tc(t)), (3)

where Tm is the cooling coil inlet air temperature which
is given by

Tm(t) = (1−dr(t))Toa(t)+dr(t)Tr(t),

where Tr is the average return air temperature, which can
be obtained as follows:

Tr(t) =
ṁz(t)T Tz(t)
1T ṁz(t)

.

Finally, we need to consider the constraints which arise
from acceptable occupant comfort:

T z ≤ Tz(t)≤ T z, 0≤ dr(t)≤ dr, (4)



as well as those that arise from the ratings of the equip-
ment:

ṁz ≤ ṁz(t)≤ ṁz, T c ≤ Tc(t)≤ Tm. (5)

In the remainder, we will assume that dr = 1 and
Tc < min(T zi), where T zi is the ith entry of the vector
T z. These assumptions are not a requirement for any
future development, but they result in a cleaner formula-
tion which is better for illustration purposes. The state
vector Tz remains unchanged. Also, we will define the
control input, s(t), as a function of flow rates as follows:
s(t) = cpṁz(t).∗(Tc1−Tz(t)). Finally, we will neglect
inter-zonal energy transfer. The matrix R becomes a
diagonal matrix proportional to the difference between
ambient and zonal temperatures, and Q̇offset is a vector
of thermal loads that are independent of both ambient
and zone temperatures. With these simplifications, the
dynamic model in (1) becomes

M
d
dt

Tz(t) = R(Toa1−Tz(t))+ Q̇offset + s(t). (6)

The expression for the fan power in (2) becomes

Pf (t) =
κ f

cp

(
1T (s(t)./(Tc1−Tz(t)))

)2
, (7)

where ./ denotes an elementwise division, and the ex-
pression for the cooling coil power in (3) becomes

Pc(t) =−1T s(t)
ηh

. (8)

The constraints in (4) – (5) result in

T z ≤ Tz(t)≤ T z, (9)
s(t)≤ s(t)≤ s(t). (10)

2.2. Baseline Power

We define the regulation power at time t as the differ-
ence between the actual power consumed by the fan
and cooling coils, i.e., Pf (t)+Pc(t), and some baseline
power, denoted by P0, which is the total electric power
consumed by the system were it not providing the reg-
ulation services. In this paper, we consider P0 to be
the value obtained from the steady state solution of (6),
with the zone temperatures set to their midpoint values
T m

z = 1
2 (T z +T z). In subsequent developments, we will

assume this solution satisfies (9) and (10). Thus, by
setting the left hand side of (6) to zero, it immediately
follows that

s0 =−(RT m
z + Q̇offset). (11)

From (11), we can calculate the baseline power using (7)
and (8), which results in

P0 =−1T s0

ηh
+

κ f

cp

(
1T (s0./(Tc1−T m

z )
))2

.

2.3. Controller Design

Previous work on TCLs have proposed various con-
trollers including a priority stack scheme [2]. Such a
design is not applicable to this system because we have
continuous control inputs rather than a number of bi-
nary ones, thus we propose a new controller which is
appropriate for more general systems.
The controller’s input is a commanded power output, P∗,
which is equal to the desired regulation plus the baseline
power. The output is a control, s(t), t > 0, which causes
the HVAC system to consume the requested amount of
power while also respecting the limits in (9) and (10).
First, we check for feasibility, and if there exists an input,
s(t), t > 0, such that all constraints are satisfied, we
choose to optimize s(t), t > 0, so temperatures are driven
towards their midpoints. We can pose this problem as a
nonlinear least square error estimation problem:

s∗(t) =arg min
s(t)

‖Tz(t +∆t)−T m
z ‖2

subject to T z ≤ Tz(t +∆t)≤ T z

s(t)≤ s(t)≤ s(t)

P∗(t)−Pf (t)−Pc(t) = 0.

(12)

If there is no feasible solution to (12), the controller
degrades gracefully by finding an alternative solution
that minimizes the error without violating state or input
constraints. The optimization problem then becomes:

s∗(t) =arg min
s(t)

|P∗(t)−Pf (t)−Pc(t)|

subject to T z ≤ Tz(t +∆t)≤ T z

s(t)≤ s(t)≤ s(t).

(13)

This behavior is not required for the parameter identi-
fication algorithm proposed in Section 4, but it would
be desirable when implementing the controller in a real
system.

3. Virtual Battery Parameter Estimation

We first propose a function which performs software-
based stress tests to determine which regulation signals
the HVAC system is capable of following. Then, we
introduce a reduced order model—the virtual battery
model—that we will use to describe the more complex
system. Using these, we formulate a criterion for the
quality of the virtual battery model for describing the
behavior of the full nonlinear HVAC system model. The
problem is then to find the parameters that optimize this
criterion.



3.1. Violation Time Function

We define a scalar input u(t) = P∗(t)−P0 which repre-
sents the commanded deviation from the baseline power
consumption profile. If a constraint is violated, we will
assume the behavior of the system is undefined.
Assume we are free to choose u(t), but have no knowl-
edge of the structure or parameters of the underlying
system and cannot make measurements beyond check-
ing if constraints have been violated. For concreteness,
assume that we have a function f (u(t),T ) which applies
the input u(t) to the system and, if there is a constraint
violation at or before t = T , stops and returns the time tv
at which a constraint was violated, otherwise it returns
∞. In other words:

f (u(t),T ) =

{
∞ if ∃ solution to (12) ∀ t ≤ T

tv otherwise,
(14)

where tv = min t such that there is no solution to (12).

3.2. Virtual Battery Model

We believe the flexibility of many buildings can be accu-
rately modeled by a virtual battery model; the dynamics
of this battery model are given by:

ẋ(t) =−ax(t)−u(t), (15)

where x(t) ∈R, u(t) ∈R, and a > 0 is a constant. There
are upper and lower bounds constraining x(t) and u(t),
i.e.,

−C ≤ x(t)≤C, −n≤ u(t)≤ n, (16)

where C > 0, n > 0, n > 0 are constant. If a constraint
is violated, the behavior is undefined. We group the pa-
rameters into a vector φ = [a,C,n,n]T to make notation
more compact.
Let b(u(t),φ ,T ) be a function which applies the input
u(t) to the battery model in (15) and, if a constraint in
(16) is violated before time T, returns the time tv at which
a constraint was violated, otherwise it returns ∞. Thus,
similar to (17), we have that

b(u(t),φ ,T ) =

{
∞ if (15) – (16) hold ∀ t ≤ T

tv otherwise,
(17)

where tv = min t such that (15) – (16) are not satisfied.

3.3. Problem Statement

We want to find the values of the virtual battery model
parameters in (15) and (16), which will allow us to pre-
dict the behavior of the dynamic model in (6) – (10) and
(12) – (13). The quality of the fit is inversely related to

Identification
Algorithm Controller

Building/
HVAC
System
Model

P∗ s
P

Tz

Figure 1. System identification setup.

the difference between the violation times predicted by
the nonlinear system and those predicted by the virtual
battery model. If the fit is not exact, we wish to err on
the side of caution by constraining the battery model
to predict a violation sooner than would occur in the
nonlinear model. This ensures that if an input does not
cause a violation on the identified battery model, it will
not not cause a violation in the nonlinear model. Math-
ematically, the problem can be formulated as finding a
set of parameters φ ∗ such that

φ
∗ = arg min

φ

‖b(u(t),φ ,T )− f (u(t),T )‖

subject to b(u(t),φ ,T )≤ f (u(t),T ),
(18)

for all values of u(t).

4. Estimation Algorithms

In this section we will propose algorithms for identifying
the parameters of the virtual battery model capturing
the flexibility of the HVAC system as described by the
dynamic model (6) – (10) and (12) – (13). The basic
structure of the proposed identification setup is shown in
Fig. 1, where P∗ is commanded power and s is a vector
of control signals. Feedback includes actual power P
and zone temperatures Tz.

4.1. Estimation of Rate Limits

The first step of the proposed procedure is to identify the
rate limits n and n. If the initial state is within its bounds
and we apply an input and a constraint is immediately
violated (i.e., f (u(0),0) = ∞), we know it was due to
the input constraints; this is because some finite time is
required for an input to affect the value of the state.
We know n > 0 (n > 0), but we do not know an upper
bound. We therefore perform a one-sided binary search
to find an upper bound. Once we have an upper bound,
we use it together with the greatest lower bound in a bi-
nary search procedure to find n (n) to arbitrary precision
ε; the details of this procedure for estimating n are laid
out in Algorithm 1. The procedure for n is similar, but
with f (·,0) replaced with g(·,0) = f (−·,0).



Algorithm 1 Rate limit search algorithm
1: procedure SEARCH(ε) . ε > 0
2: α ← 0 . Lower bound
3: β ← 1 . Upper bound
4: while f (β ,0) = ∞ do . No instant violation
5: α ← β

6: β ← 2 ·β
7: end while
8: while (β −α)> ε do
9: γ ← (α +β )/2 . New bound to be tested

10: if f (γ,0) = ∞ then
11: α ← γ

12: else
13: β ← γ

14: end if
15: end while
16: return α . Less than ε below true value
17: end procedure

4.2. Estimation of Capacity and Dissipation
Constant

If we respect the previously identified rate limits, we
can guarantee that any constraint violation error is due
to the capacity limit. In general, dissipation cannot be
neglected when solving for the capacity limit so the two
must be solved for simultaneously.
Let u(t) = k be constant and x(0) = x0. The solution to
(15) is given by

x(t) =
(

x0 +
k
a

)
e−at − u

a
.

Then, by setting x(tv) = −C, x0 = 0 and solving for tv,
we obtain that

tv = b(k,φ ,T ) =−1
a

log
(

1+
−aC

k

)
, (19)

if k > aC.
Because we are trying to fit the behavior of a linear
model to that of a nonlinear one, we must look for a
sufficient solution instead of an exact one. We say a
solution is sufficient in the sense that verifying that an
input does not cause any violations in the virtual battery
model is sufficient to guarantee that the same input will
not cause violations in the full nonlinear model. We
are unable to prove that a solution is sufficient, i.e., the
constraint in (18) will hold for all u(t), because of the
nonlinearity in (7); instead, we propose a heuristic. In
Section 5 we will provide empirical evidence for the
effectiveness of this heuristic procedure.
We start the procedure by picking a large value of T
and generating u1(t), . . . ,un(t) such that violation times

will be finite. Constant functions with different (log-
distributed) magnitudes are a natural first choice, but
others can be used. Then, we can construct a vec-
tor of violation times given by the nonlinear model:
F = [ f (u1(t),T ), . . . , f (un(t),T )]T . We also construct
a vector of violation times given by the linear model:
B(a,C) = [b(u1(t),φ ,T ), . . . ,b(un(t),φ ,T )]T . The pa-
rameters a and C enter the calculation through the pa-
rameter vector φ .
We wish the find the values of a and C so the two models
have similar violation times. If the difference in times
cannot be reduced to zero, we require that the violation
time predicted by the virtual battery model be less than
that of the nonlinear model. We can cast this problem as
a constrained nonlinear least squares problem:

minimize
a,C

‖B(a,C)−F‖2

subject to B(a,C)≤ F.
(20)

If u(t), t ≥ 0, is constant, we can write an analytic ex-
pression for b as in (19), but in general we cannot ana-
lytically solve for the first tv at which the equality given
by

x(tv) =−
∫ tv

0
e−a(tv−τ)u(τ)dτ =±C (21)

holds; this occurs for all but the simplest u(t), t ≥ 0. If
this is the case, we can use a numerical method within the
function b, just like we must use for f . Given x(0) = 0,
ẋ(t) = −ax(t)− u(t) we can approximate the system
trajectory, x(t), t > 0, until |x(tv)| = C, and record tv.
This change makes the computation of B to take orders
of magnitude longer, but we found that solving (20) is
still computationally tractable. Because f needs to be
calculated only once, we expect the procedure to scale
well to large systems.

5. Numerical Estimation Results

We begin this section by examining the behavior of the
controller and building/HVAC system model presented
in Section 2. We will then test the performance of the
identification procedure described in Section 4 on the
aforementioned system. These studies use the system
parameters in Table 1.

5.1. Controller Performance Verification

In the first study, we examine the behavior of the con-
troller proposed in Section 2 and verify its functional-
ity. The baseline power is calculated to be 4.17kW.
Fig. 2 shows that initial zonal temperatures are evenly
distributed through the acceptable range indicated by
dashed lines. We see that the controller initially drives



Table 1. Parameters used in numerical study

Parameter Value Unit

n 5 zones

∆t varied s

cp 1 kJ/(kg K)

mci 1000 kJ/K

R 0.1 kW/K

ηh 0.9 dimensionless

κ f 0.065 kW s2/kg2

T zi 21 ◦C

T zi 24 ◦C

T oa 30 ◦C

mzi 0.025 kg/s

mzi 1.5 kg/s

Q̇offset 0 kW

temperatures toward the midpoints, as desired. Min-
imum flow rate constraints are initially binding for
zones 1 through 4. The commanded power is then
stepped from 0 kW to 1 kW. The controller initially
issues commands that perfectly meet the request. Tem-
peratures decrease until temperature constraints become
binding. At this point the controller is unable to meet
the requested power, so there is a positive error.

5.2. Charge Rate Limit Estimation

We next use the estimation procedure outlined in Sec-
tion 4 to identify the positive charge rate limits n and
n. We obtain that n = 103.7kW and n = 2.44kW; the
asymmetry is quite large because, for the chosen param-
eters, the air conditioning system is capable of blowing
much more cold air than required to maintain a steady
temperature. On the other hand, the baseline air flow is
quite close to the lower limit, so it cannot consume much
less than the baseline power value. For this reason, this
system would be much better utilized in a market that
treats up and down regulation as two distinct services.

5.3. Capacity and Dissipation Estimation

The next step is to identify capacity and dissipation pa-
rameters. For this task, a set of test inputs needs to be
chosen. We investigate a number of different families of
inputs and compare their performance. The parameters
identified using the different techniques are remarkably
consistent; the results are summarized in Table 2.
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Figure 2. Response to step regulation signal.

5.3.1. Step Input. We first test the use of inputs of the
form u(t) = k, t ≥ 0, with k ∈ R. Fifty values of k were
chosen logarithmically distributed between a value just
above aC (which can be found using a search procedure
similar to the one outlined in Algorithm 1) up to n. Fig. 3
provides a plot of violation time versus input magnitude.
If a = 0, we would expect a straight line with slope −1.
The line curves upward for small inputs because there is
more time for the effects of the dissipation to manifest
themselves.

Step inputs are simple enough that we can find an an-
alytic solution to (21); thus we have a choice of cal-
culating b using an analytic expression or a numerical
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solver. In this regard, the optimization procedure in (20)
runs orders of magnitude faster with the analytic expres-
sion, and the identified parameters were confirmed to be
nearly identical in either case.

5.3.2. Ramp Input. Fig. 4 shows the result for inputs
of the form u(t) = kt, t ≥ 0, with k ∈ R. Again, we cal-
culate the parameters using both an analytic expression,
which is given by

tv =
1
a

(
1+

a2C
k

+W (−e−1− a2C
k )

)
,

where W is the Lambert W function [9], and a numerical
solver; both approaches yield identical results. The iden-
tified parameters also agree with those identified using
the step inputs.

5.3.3. RC Step Input. Fig. 5 shows the result for in-
puts of the form u(t) = k(1− e−λ t), t ≥ 0, with k ∈ R,
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Figure 5. Best battery model bounded above
by RC charging step input.
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Figure 6. Best battery model bounded above
by monomial.

and λ = 5×10−5 s−1. For a given k, violation times
with this input are larger than the instantaneous step
input because u(0) = 0 and u(t) approaches k asymp-
totically. For this type of input and the following types,
there is not an analytical expression for the violation
time, so we only test the numerical methods. In the end,
the identified parameters agree with the previous values
identified using step functions.

5.3.4. Monomial Input. Fig. 6 shows the result for
inputs of the form u(t) = ktλ , t ≥ 0, with k ∈ R, and
λ = 1

3 . The parameters obtained using this input provide
further evidence for the consistency of the results among
different input types.

5.3.5. Regulation Signal Step Input. Fig. 7 shows vi-
olation time vs input constant using a modified regula-
tion signal u(t) = r(t)(k(r(t)> 0)+n(r(t)< 0)), where
r(t) is the PJM dynamic regulation signal from [10].
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A representative segment of this signal is shown in
Fig. 8. This asymmetric signal was selected because
of the asymmetric nature of the charge rate constraints.
A symmetric signal that respects n would never violate a
capacity limit and would not provide limited economic
benefit. Providing asymmetric regulation is possible in
markets such as CAISO, where up regulation and down
regulation are treated as different services.
Of all the tests, this had the most issues with conver-
gence, step sizes, and tolerances. This is likely due to
the input function not being monotonic. With a mono-
tonic function, a small integration or interpolation error
will lead to a small change in violation time. This is not
the case with this input signal. A small difference (for
example, the nonlinear data uses Euler’s method, but the
battery model uses Runge-Kutta) can lead to a much big-
ger difference in violation time. Even with this difficulty,
the estimated parameters using this input match those
obtained with the other aforementioned approaches (see
Table 2). Conversely, the parameters identified using the
other inputs performed practically identically in predict-
ing violation times from the regulation signal. Overall
this is excellent empirical evidence to support our pro-
posed stress-based estimation procedure for this system.

6. Concluding Remarks

We have introduced a controller which allows for the
HVAC system of a commercial building to provide fre-
quency regulation and demonstrated its behavior. We
have introduced a method whereby the ability of the re-
sulting closed-loop system to provide frequency can be
sufficiently modeled as a simple, well understood battery
model. Although the estimation method is an approxi-
mation, it was found to perform remarkably accurately
on our test system.
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Figure 8. Portion of modified dynamic regula-
tion input signal, k = 99.5.

Table 2. Estimated Parameters
Parameter

Input b Solver a (s−1) C (kWh)

Step Analytic 1.003×10−4 2.321

Step Numerical 1.003×10−4 2.321

Ramp Analytic 1.002×10−4 2.324

Ramp Numerical 1.002×10−4 2.324

RC Step Numerical 1.003×10−4 2.321

Monomial Numerical 1.003×10−4 2.322

RegD Numerical 9.966×10−5 2.334

There are a number of issues we are planning to fur-
ther develop in our future work. First, we believe the
proposed identification technique is quite general; thus,
we plan to test the performance of our procedure on
additional types of systems, including those the exact
dynamics of which are unknown, but may be inferred
from historical data. Another issue worth exploring is
relaxing the assumption that all parameters, including
ambient air temperature and acceptable comfort temper-
ature ranges, are constant in time. Further research could
examine how time varying system parameters affect bat-
tery parameters. Additionally, we could test how quickly
the identification procedure can detect these changes.
Finally, in our procedure, we initialize our system with
zero initial charge. If this were not the case, we would
likely want to determine up and down capacities sepa-
rately. The current charge would be difference from the
midpoint of the up and down capacities.



References

[1] Y. Makarov, C. Loutan, J. Ma, and P. de Mello, “Oper-
ational impacts of wind generation on california power
systems,” IEEE Transactions on Power Systems, vol. 24,
no. 2, pp. 1039–1050, May 2009.

[2] H. Hao, B. Sanandaji, K. Poolla, and T. Vincent, “A gen-
eralized battery model of a collection of thermostatically
controlled loads for providing ancillary service,” in Proc.
of Allerton Conference on Communication, Control, and
Computing, Oct 2013, pp. 551–558.

[3] M. Alizadeh and A. Scaglione, “Least laxity first schedul-
ing of thermostatically controlled loads for regulation
services,” in Proc. of IEEE Conference on Signal and
Information Processing, Dec 2013, pp. 503–506.

[4] B. Sanandaji, H. Hao, and K. Poolla, “Fast regulation
service provision via aggregation of thermostatically con-
trolled loads,” in Proc. of Hawaii International Confer-
ence on System Sciences, Jan 2014, pp. 2388–2397.

[5] E. Vrettos and G. Andersson, “Combined load frequency
control and active distribution network management with
thermostatically controlled loads,” in Proc. of IEEE Con-

ference on Smart Grid Communications, Oct 2013, pp.
247–252.

[6] H. Hao, A. Kowli, Y. Lin, P. Barooah, and S. Meyn,
“Ancillary service for the grid via control of commer-
cial building hvac systems,” in Proc. of IEEE American
Control Conference, June 2013, pp. 467–472.

[7] A. Kelman and F. Borrelli, “Bilinear model predictive
control of a HVAC system using sequential quadratic
programming,” in Proc. of IFAC World Congress, Aug.
2011, pp. 9869–9874.

[8] J. Mathieu, M. Kamgarpour, J. Lygeros, and D. Callaway,
“Energy arbitrage with thermostatically controlled loads,”
in Proc. of IEEE European Control Conference, July
2013, pp. 2519–2526.

[9] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth,
“On the Lambert W function,” Advances in Computa-
tional Mathematics, vol. 5, no. 1, pp. 329–359, 1996.

[10] “Fast response regulation signal,” [Online] http://www.
pjm.com/markets-and-operations/ancillary-services/
mkt-based-regulation/fast-response-regulation-signal.
aspx, Accessed: 2014-02-12.


