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Abstract—This paper proposes a measurement-based method
to assess transmission line loadability, particularly when deter-
mined by stability constraints. A power system two-area equiv-
alent model provides the basis for the proposed line loadability
assessment method, with the angle across this equivalent model
defining a metric of the closeness to the system stability limits.
In this paper, using advanced synchrophasor measurements,
Kalman filter-based algorithms are applied to estimate the pa-
rameters and variables of the aforementioned equivalent system
model. A significant benefit of the proposed method is that it does
not rely on the knowledge of the system topology and parameter
values. The proposed method is illustrated through a two-bus
system example and a two-area system case study.

I. INTRODUCTION

Transmission line loadability analysis is a critical compo-
nent of system planning and operating studies. Line loading
margins provide a useful metric to operate the power sys-
tem to satisfy demands while ensuring a stable operation.
Transmission line loading limits are also essential to deter-
mine locational marginal prices in power markets. Therefore,
the assessment of transmission line loadability under various
operating points becomes important. There are three basic
factors which limit the loabability of a transmission line:
(i) thermal, (ii) voltage drop, and (iii) stability limitations.
It is well recognized that the loadability of short lines is
principally limited by thermal constraints, medium-length
lines by voltage drop limitations, and long lines by stability
considerations [1]. While line loading margins determined
by thermal and voltage-drop considerations can be directly
obtained from equipment thermal ratings and the terminal
bus voltage measurements, respectively, those determined by
line stability limitations are not as straightforward to obtain.
In this paper, we focus on the assessment of transmission
line loadability when limited by stability considerations. For
subsequent developments, we note that long high-voltage
transmission lines (200 miles and above), whose loadability
is determined by stability considerations, are usually used to
interconnect two areas that are otherwise weakly coupled.

Transmission line loadability has been widely studied (see,
e.g., [1]–[3]). For example, the so-called St. Clair curves,
which relate line loadability and line length, have been pre-
sented based on practical experience in 1953 [1]. The authors
in [2] developed an analytical basis to rebuild the St. Clair
curves and it was shown that the results, which are derived
from a simplified equivalent two-machine representation of the

system, and the original St. Clair curve are nearly identical.
Furthermore, the authors in [3] extended the analytical basis to
operating studies. However, as discussed in [3], it is challeng-
ing to adapt the analytical technique to on-line assessment
of line loadability, since real-time system state information
is required and a further study for obtaining the equivalent
system representation is necessary. The deployment of phasor
measurement units (PMUs) presents promising potential to
address the problem described above. PMUs can directly mea-
sure the voltage and current phasors (i.e., both magnitudes and
angles), which are referred to as synchrophasor measurements,
at a high sampling rate [4].

In this paper, instead of obtaining the equivalent system
model from short circuit analyses with system topology infor-
mation and parameters as in [3], we propose a measurement-
based method to obtain the equivalent system model. A major
benefit of the proposed method is the elimination of reliance
on system topology and parameter information, i.e., only
synchrophasor measurements of currents and voltages on the
two terminals of the transmission line under consideration
are required. Although transmission line stability limitation is
assessed in steady state, we rely on small disturbances (such
as load and generation variations) inherent to the system in
order to estimate the equivalent system based on only the
synchrophasor measurements. Specifically, we assume that
the response to the aforementioned small disturbances of
each of the machines in the equivalent can be captured by
the classical machine model, where the internal voltages are
assumed to be fixed, consistent with the assumption made in
[3]. Furthermore, the effectiveness of this two-area model has
been validated in the dynamic system equivalencing literature
(see, e.g., [5], [6] and the references therein).

This work extends our earlier work in [7] by casting
the problem as a dynamic system estimation problem. The
framework developed in this paper integrates two bodies
of work; namely synchrophasor measurement-based system
equivalencing (see, e.g., [5], [6]) and the Kalman filtering
literature (see, e.g., [8]–[11]). The extended Kalman filter and
its variants are implemented to address the effect of noise on
PMU measurements and to evaluate the equivalent parameters
systematically. In addition, our framework also allows for
higher-order equivalent system models if necessary. Then, with
the estimated equivalent system parameters, transmission line
loadability can be assessed.
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Fig. 1: Two-area power system.

II. PROBLEM FORMULATION AND SYSTEM MODEL

In this section, we derive the analytical model used to assess
transmission line loadability. A metric to describe the loading
of the line under consideration is also introduced. We then
provide the equivalent system model formulation.

A. Transmission Line Loadability Assessment

Consider a power system, where a transmission line of
interest connects two subsystems as shown in Fig. 1. The
two subsystems are equivalent to two simplified circuits, while
the connecting transmission line is retained in the equivalent
system model [2]. As shown in Fig. 2, each equivalent circuit
consists of a reactance, respectively denoted by X1, X2, and
an internal voltage source, respectively denoted by E1∠δ1,
E2∠δ2. The transmission line is represented by the so-called
π model.

As mentioned in Section I, the work in this paper focuses on
quantifying the loadability of long transmission lines, which
are dominated by stability considerations. Stability is usually
measured in terms of the margin between the current power
flowing across the transmission line and the maximum possible
power flow Pmax as a percentage of Pmax [3]; we refer to this
margin as stability margin (SM). For the system in Fig. 2, if we
neglect the line resistance (which is usually small compared to
line reactance) and the shunt admittances, the power flowing
across the system is exactly proportional to the sine of the
angle across the system (AAS). Therefore, the stability margin,
reflecting the line loadability, can be calculated as follows [3]:

SM =
Pmax − P
Pmax

= 1− sin(|δ1 − δ2|). (1)

We note that the setup of our original system in Fig. 1 can
be rationalized by the fact that the long transmission lines
are usually used to interconnect two areas that are otherwise
weakly coupled. Therefore, the two subsystems in Fig. 1 are
not coupled except through the transmission line of interest.

B. Equivalent System Model

As shown in Fig. 1, two PMUs are set up at the terminals
of the transmission line under consideration to measure the
voltage and current phasors. We denote by V̄i = Vi∠θi
(i = 1, 2) the voltage phasor at each end of the transmission
line, and by Īi = Ii∠γi (i = 1, 2) the phasors describing the
current flowing into the transmission line from each end as
shown in Fig. 2. Each of the subsystem equivalent circuits is
modeled using a classical machine model, which can generate
or consume power [5]. Now the equivalent system can be

Fig. 2: Two-area power system equivalent model.

described by a set of differential-algebraic equations (DAEs)
(neglecting resistance and shunt admittances):

dδ1
dt

= ω1 − ωs, (2a)

dω1

dt
=

ωs
2H1

(
PM1 −

E1E2 sin(δ1 − δ2)

X1 +Xl +X2

)
, (2b)

dδ2
dt

= ω2 − ωs, (2c)

dω2

dt
=

ωs
2H2

(
PM2 −

E1E2 sin(δ2 − δ1)

X1 +Xl +X2

)
, (2d)

V̄1 =
E1∠δ1(Xl +X2) + E2∠δ2X1

X1 +Xl +X2
, (2e)

Ī1 =
E1∠δ1 − E2∠δ2
j(X1 +Xl +X2)

, (2f)

V̄2 =
E2∠δ2(Xl +X1) + E1∠δ1X2

X1 +Xl +X2
, (2g)

Ī2 =
E2∠δ2 − E1∠δ1
j(X1 +Xl +X2)

, (2h)

where ωs is the system nominal frequency, PMi is the equiv-
alent mechanical power input, ωi is the speed and Hi is
the equivalent inertia for i = 1, 2. In this model, equations
(2a)-(2d) are referred to as state equations, describing the
state evolution, while equations (2e)-(2h) are referred to as
observation equations, describing Kirchhoff’s relations for the
circuit in Fig. 2. In practice, the values of the observations (i.e.,
the PMU measurements V̄i , Īi) can be set to be expressed in
either polar form or cartesian form. The observation equations
then can be converted to scalar equations accordingly.

Define x=[x1, x2]T , where xi=[δi, ωi, Ei, Xi, Hi, PMi]
T ,

i=1, 2, and ytrue=[V1, θ1, I1, γ1, V2, θ2, I2, γ2]T . Measurement
noise is unavoidable in the system observations; therefore, we
assume that the system measurements can be described as
y = ytrue + η, where the entries of η ∈ R8 are independent
white noise processes. Then the resulting DAE model can be
compactly written as:

ẋ = f̃(x), (3a)
y = h(x) + η, (3b)

where f̃ : R12 7→ R12 and h : R12 7→ R8 can be defined
by using (2). Since in the classical model, the internal voltage
magnitudes and reactances are assumed to be constant, the
derivatives of Ei, Xi, Hi and PMi (i = 1, 2) are set to zero.



C. Discretized Model

Since PMUs provide measurements at discrete time instants,
we utilize a discretized version of (3). Assuming the time step
∆t is sufficiently small (in this case, ∆t depends on the PMU
measurement rate, typically 0.1–0.01 s), the expression in (3b)
can be approximated by a nonlinear recursive equation model
of the form:

xk+1 = xk + f̃(xk)∆t =: f(xk), k ∈ Z+; (4)

then we can rewrite (3) as:

xk+1 = f(xk), (5a)
yk+1 = h(xk+1) + ηk+1, k ∈ Z+. (5b)

Now the problem is to estimate the state x based on the
observation y in (3) using the descretized model in (5).

III. EQUIVALENT SYSTEM PARAMETER ESTIMATION

In this section, we provide a summary of the key ideas be-
hind Extended Kalman filtering. Then, we propose a modified
extended Kalman filter to address the issues that arose when
applying extended Kalman filter to our system. Examples are
also included to illustrate the ideas presented.

A. Extended Kalman Filter (EKF)

Given the nonlinear model in (5), the first intuitive idea to
estimate its state is to apply an extended Kalman filter. As a
nonlinear version of the Kalman filter, the core concept behind
the extended Kalman filter is the linearization of the system
model around the state estimate at each time step. However, the
performance of the extended Kalman filter varies significantly
depending on the nonlinearity of the system. As a result, the
convergence region of the initial estimates may be significantly
limited if the system is highly nonlinear, meaning the filter
may fail to converge if the initial estimates are away from
the correct values; our model has this problem as we will
see in Example 1. It is obvious that it is very difficult to
precisely know the correct values of the initial states. One
way to address this issue is to take a guess of the initial state
and set the initial estimate covariance to be a sufficiently large
number times the identity matrix; however, this results in the
estimates converging to some value that is not the correct one
[10]. Therefore, in the next section, we propose the use of a
modified iterated extended Kalman filter (see, e.g., [9]).

Example 1: In order to focus on the performance of the
filter, we assume that the equivalent on the right of Fig. 1
is an infinite bus, which means X2 = 0 p.u., E2 = 1 p.u.,
and δ2 = 0 rad. The parameter values are listed in Table I.
Unless otherwise stated, all quantities are in per unit (p.u.). We
apply a disturbance to the system, and use an extended Kalman
filter to estimate the states δ1, ω1, E1, X1, H1, and PM1.
The comparisons of the correct values and the estimates of δ1
with different initial state estimates and estimate covariance
are depicted in Fig. 3. As shown in Fig. 3(a), if the initial state
estimates are set to the correct values (although this may be
difficult in practice), the estimates and the actual state values

TABLE I: Example system parameter values.

E1 δ1(0) [rad.] X1 Xl H [s] PM1 Ē2
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(a) Correct initial state estimate.
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(b) 1% error in the initial estimate.
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(c) Initial estimate close to the actual
values.
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Fig. 3: Extended Kalman filter performance.

are nearly equivalent. However, as shown in Fig. 3(b), if the
initial state estimates are not the correct values, although very
close (1% error in this case), and the estimate covariance is still
0, the resulting state estimates are far from the correct values.
As shown in Fig. 3(c), if the initial state estimates are not the
correct values (but still close to the correct values) and the
estimate covariance are set to be 106I , where I is the identity
matrix, the state estimates converge to biased values, meaning
asymptotic convergence error exists. When the initial state
estimates are not close to the correct values, the system easily
fails to converge due to the system nonlinearity, as shown in
Fig. 3(d). By varying the initial state estimates, we found that
this problem is particularly severe for the equivalent reactance
X1, which results from the fact that the state evolution function
involves a nonlinear inverse function of X1. As shown in Fig.
3(d), when the initial state estimate of X1 is set to be 0.4, even
with large initial estimate covariance, the estimates diverge.
Furthermore, unlike other parameters, such as E1 which is
usually close to 1, it is difficult to guess the range of X1

initially. �

B. Modified Iterated Extended Kalman Filter Processing

In the model in (5), both the state dynamic evolution
equations and the observation equations are nonlinear. By
properly manipulating the observation equations, the system
can be decoupled in the senses that (i) the dynamic evolution
equations and observations equations are decoupled; and (ii)
the two subsystems on the two sides are decoupled as well. To
this end, for i = 1, 2, we can derive the following relationship:

Ii(t)
2X2

i +2Ii(t)Vi(t)Xi sin(θi(t)−γi(t))+Vi(t)
2−E2

i = 0.
(6)

In the above expression, no dynamics are included. It is
worth noting that this equation also indicates that only the
difference between the current phase angle and voltage phase



angle, instead of their absolute values, matters. Therefore the
mismatch issue caused by the PMU measuring at the off-
nominal frequency will not affect the estimation accuracy here.
The details can be found in [4].

Let

g̃i,t(x) = Ii(t)
2X2

i +2Ii(t)Vi(t)Xi sin(θi(t)−γi(t))+Vi(t)
2;

(7)
for two sets of measurements at time t and t − T , we can
further derive the following relationship:

g̃i,t(x)− g̃i,t−T (x) = 0 (8)

where T is a constant time interval. In practice, T should be
a multiple of the time step ∆t. Now, the system of interest
becomes a nonlinear algebraic equation model of the form:

0 = gi,t(x), for i = 1, 2, t > T, (9)

where gi,t(x) = g̃i,t(x)− g̃i,t−T (x), and essentially the state
x here only involves the equivalent reactance Xi.

1) Modified extended Kalman filter (MEKF): In this case,
since the dynamic states are not involved, with the discretized
model in (9), the extended Kalman filter for the modified
system is given by

x̂k = x̂k−1 − S−1
k ∇gi,k(x̂k−1)gi,k(x̂k−1), (10a)

Sk = λSk−1 +∇gi,k(x̂k−1)∇gi,k(x̂k−1)T , (10b)

where λ can be viewed as a fading factor, k indicates the kth

step and S0 = 0. Further information on the derivation of (10)
can be found in [9], [10].

As illustrated in Example 2 below, the convergence property
improves significantly; in other words, the convergence region
of the initial states has been expanded substantially. In our
system, due to the convex property of (8), according to
Proposition 2 of [10], the initial state estimate can be set as
an arbitrary value. However, when the initial state estimates
are far from the correct value, the estimation likely fails to
converge to the correct values. In order to address this issue,
the iterated extended Kalman filter ([10], [11]) is introduced
as described next.

2) Iterated extended Kalman filter (IEKF): The basic con-
cept behind the iterated extended Kalman filter is to iteratively
use multiple copies of the data set [10]; in other words, after
n steps, the final estimates will be used as the initial state
estimates and the extended Kalman filter processing will repeat
from the beginning. The filter dynamics can be described by:

x̂cn+k = x̂cn+k−1 − S−1
cn+k∇gi,k(x̂cn+k−1)gi,k(x̂cn+k−1),

Scn+k = λScn+k−1 +∇gi,k(x̂cn+k−1)∇gi,k(x̂cn+k−1)T ,

where c = 0, · · · , C − 1; k = 1, · · · , n.
The iterated extended Kalman filter can guarantee the con-

vergence bias error approaches to zero, when the number of
repetition C is large enough. However, the main drawback in
IEKF is that a set of n measurements must be available before
the estimation process can begin. Hence, it cannot proceed
recursively as in a traditional Kalman filter.
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(a) MEKF with X0 = 0.5.
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Fig. 4: MEKF and IEKF.

We may further improve the performance of IEKF by setting
the fading factor λ to a value smaller than one, leading to faster
convergence rates than for λ = 1 [10]. However, for λ = 1,
higher accuracy is obtained since it smooths the noises better
by weighting all measurements equally. To take advantage of
the trade-off between convergence rate and accuracy, we apply
different values of λ in different iterations, with λ < 1 in
earlier iterations and λ = 1 afterwards.

Example 2: Consider, again, the system discussed in Exam-
ple 1. The MEKF and IEKF are applied to the measurement
set. In Fig. 4(a), using MEKF, X1 converges to the correct
value (0.2 p.u.) even when the initial state is set to be 0.5,
which is far from the correct value. However, when the initial
state estimate is further from the correct value, (e.g., 5 p.u.),
although MEKF still converges; convergence error occurs at
the final state estimate. As shown in Fig. 4(b), the estimate of
X at the last time step is above 0.5. Using IKEF, the estimates
converge to the correct value as shown in Fig. 4(c), although
many iterations are required for convergence. In Fig. 4(d),
λ = 0.8 is applied in the first 2 iterations and the convergence
rate is improved significantly over that shown in Fig. 4(c). �

C. Filter Application

Within the context of this paper, according to the advantages
and drawbacks of the different filters, we summarize the
applications of different filters in different situations.
(i) In the beginning, since we have little information about

the range of the states. IEKF should be applied to obtain
the precise initial state estimates.

(ii) With the precise initial state estimates, on-line MEKF can
be applied to recursively estimate the equivalent reactance
in real time.

(iii) With equivalent reactance Xi known, the Ei and δi are
readily obtained using Kirchhoff’s voltage laws:

Ei∠δi = Vi∠θi + jXiIi∠γi, i = 1, 2.

Then the stability margin, as well as the loadability



characteristics, can be evaluated by using (1). If the state
variables in the state equations are of interest, the EKF
with full model can be applied to estimate those states,
such as the equivalent inertia.

IV. CASE STUDY

In this section, we apply the methology described in the
previous sections to analyze a two-area system with four
generators and two loads. All the generator models include
subtransient effects, exciters and governors. The transmission
line of interest is the long tie line connecting two areas with
relatively high reactance. Two PMUs are assumed to be set
at the two terminals of this line to collect measurements. The
MATLAB-based Power System Toolbox (PST) is utilized to
simulate this system. This two-area system is a modification
of one of the PST demonstration systems and the details and
parameters can be found in [12]. In this study, the loads
are changed randomly to inject small disturbance into the
system. The time-varying loads obey the normal distribution
with variance of 1 p.u. The voltage phasors, as well as the
current phasors flowing are recorded and assumed to emulate
as the PMU measurements.

In the base case, after injecting the load variation dis-
turbance and applying the estimation method described in
Section III, the angle difference across the line (i.e., θ1 − θ2)
and the angle-across-system (δ1 − δ2) are depicted in Fig.
5. In the first 0.5 s, the AAS value is missing because as
mentioned in Section III-C initially a batch of measurements
(the measurements from 0 to 0.5 s in this case) are needed to
apply IEKF. As shown in Fig. 5(a), even θ1 − θ2 is less than
30 deg. The actual AAS has already been up to around 59
deg. Next we reduce both loads by 50%, the power flowing
on the tie line is also reduced by 50%. Similarly, the angle-
across-line and angle-across-system are depicted in Fig. 5(b).
The AAS and corresponding stability margin in the two cases
are listed in Table II. As we mentioned earlier, the power flow
is proportional to the sine of the AAS. This is consistent with
the numbers in the table, where the sine of the AAS in the
base case is 0.86, while it is 0.42 when the system is 50% less
loaded. On the other hand, since the SM is 0.14 for the base
case, the maximum power flow should be equal to 116% (i.e.,
1/(1 − SM)) of the power flow in the base case. To validate
this, we increase the loads by the step of 1% and we find that
115% is the threshold over which the system fails to function.
The closeness of 115% and 116% verifies the accuracy of this
method.

V. CONCLUSIONS

In this paper, we proposed a framework to assess the
operating transmission line loadability; particularly, we study
the stability factor which limits the loadability. In this frame-
work, we evaluate the stability margin by a function of the
angle across the equivalent system; and subsequently, the line
loadability can be easily assessed based on the current power
flow and stability margin.
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(b) 50% less loaded case.

Fig. 5: Angle-across-line vs. angle-across-system.

TABLE II: Stability measures in two cases.

Avg. AAS [deg.] sin (AAS) SM
Base Case 58.95 0.86 0.14

50% Less Loaded 24.96 0.42 0.58

The focus here was to obtain the equivalent two-area system
model using synchrophasor measurements. To this end, we
proposed the use of extended Kalman filtering to obtain
the parameters of the equivalent model. We illustrated the
advantages and drawbacks of different algorithms for extended
Kalman filtering in several numerical examples.
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