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Abstract—In this paper, we propose a method to optimally
set the taps of voltage regulation transformers in distribution
networks. Specifically, we cast the problem of optimally choosing
the tap settings as a rank-constrained semidefinite program (SDP)
with the transformer tap positions removed from the network’s
admittance matrix and replaced by additional constraints and
optimization variables. Then, the non-convex rank-1 constraint
that arises from this rank-constrained SDP formulation is re-
laxed, which leads to a convex SDP program. The tap positions
are obtained from the primary- and secondary-side bus voltages
yielded by the optimal solution. We present several case studies
with a 14-bus single-phase and a 15-bus three-phase distribution
system to demonstrate the validity of our method.

Index Terms—Tap-Changing under-load (TCUL) transformer,
Optimal Power Flow (OPF), Semidefinite Programming (SDP).

I. INTRODUCTION

In power distribution systems, it is common to utilize
tap-changing under-load (TCUL) transformers and switched
capacitors to regulate voltage. In general, the settings of these
devices are automatically adjusted via automatic voltage regu-
lators (AVRs) that act based upon local voltage measurements.
While this decentralized approach to voltage regulation is
effective for voltage control purposes, it may not be optimal in
the context of the overall system operation, e.g., it might not
result in minimum network losses. In this regard, by relying on
point-to-point communications between the various regulation
devices and a centralized processor, it is possible to optimally
decide the device settings; this decision-making problem is
very much like the optimal power flow problem (OPF) that
commonly arises in transmission networks.

In this paper, we tailor the OPF formulation to distribution
networks to include the tap settings of distribution transformers
as decision variables; this is crucial to enable optimal voltage
regulation in distribution networks. The inclusion of trans-
former tap settings in the OPF formulation for transmission
networks has been investigated for decades. For example, in
[1], the transformer tap positions are included as discrete
variables in the OPF problem, which becomes a mixed-integer
program (MIP). Unfortunately, the computational complexity
of this formulation grows exponentially as the number of
transformers increases, and thus becomes intractable for large
systems. To tackle this problem, it has been proposed to rep-
resent the transformer tap positions with continuous variables,
and then round the solutions to the closest discrete valuables.
This alternative approach can yield acceptable results without

incurring the exponential complexity; see e.g., [1]–[3]. How-
ever, all these approaches are restricted to the standard OPF
formulations, and thus may suffer from the convergence issues
of traditional solvers.

Cast as a rank-constrained semidefinite program (SDP),
the OPF problem can be solved using convex solvers by
dropping the only non-convex rank-1 constraint; see e.g.,
[4]–[7]. In general, this rank relaxation is not guaranteed to
attain the global minimum, in particular for mesh networks.
Interestingly, it has been shown that under some mild con-
ditions, the optimal solution for the relaxed SDP-based OPF
problem turns out to be of rank 1 for tree networks typical
of distribution systems [4]–[6]. This implies that the rank
relaxation scheme is actually guaranteed to attain the global
optimum of the original OPF problem. In addition to handling
the OPF problem, the SDP-based approach also constitutes
a very promising tool to tackle the nonconvexities in other
operations and control tasks for distribution systems.

Leveraging the convex SDP formulation, the voltage reg-
ulation transformer tap positions can be incorporated in the
OPF problem as decision variables by introducing a virtual
secondary-side bus per transformer with additional constraints
[8]. However, the voltage regulation transformer model pro-
posed in [8] is insufficient. The reason is two-fold: (i) the
optimal solution to the relaxed problem fails to yield a rank-1
matrix; and (ii) it is only valid for a single-phase network.
The first issue arises from the fact that the network is broken
into two disconnected subnetworks after introducing the virtual
bus. The three-phase extension is very important for distribu-
tion systems, which fails due to the independent setting of the
tap position for each phase in the SDP-based formulation. As
it will become more clear later on, it is impossible to enforce
the per-phase coupling between the primary- and secondary-
side buses in the SDP-based formulation. To tackle the two
issues discussed above, we propose to modify the model in [8]
by including a highly resistive line between the primary- and
secondary-side buses. This modification does not introduce
additional complexity in the OPF problem and successfully
resolves the two aforementioned issues.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model, and formulates the
transformer tap-setting problem. Section III discusses the rank
issue of the solution from Section II. The modified transformer
model is introduced in Section IV. Section V presents the case
studies and the paper is concluded with Section VI.



II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first provide an overview of the pos-
itive semidefinite formulation of the power flow equations
and introduce the transformer model proposed in [8]. Then,
we formulate the optimal voltage regulation transformer tap-
setting problem as a relaxed SDP optimization problem.

A. Power System Model

Consider an n-bus power system that has nt transformers
with the ability to adjust their tap positions. Let N denote
the set of buses {1, . . . , n} and T be the set of transformers
{1, . . . , nt}. The set of buses incident to the primary-side of
a transmission line containing a transformer is Np := {pt ∈
N | t ∈ T }; and similarly for the set of buses incident to the
secondary side we have that Ns := {st ∈ N | t ∈ T }. The
edge-set that represents the set of transmission lines (single-,
two-, or three-phase) is E := {(i, k) | i, k ∈ N} ⊆ N × N ;
and the set of edges with transformers is denoted by Et :=
{(pt, st) ∈ E | t ∈ T } ⊆ E .

Let Vi denote the ith entry of the bus voltage vector1 v ∈
Cn, and Hi := {i} ∪ {k | (i, k) ∈ E}. The complex power
injection at bus i ∈ N is given by

Si = Vi
∑
k∈Hi

Y ∗ikV
∗
k , (1)

where Yik is the (i, k) entry of the admittance matrix Y . We
define W ∈ Cn×n as the outer product of v:

W = vvH =


|V1|2 V1V

∗
2 · · · V1V

∗
n

V ∗1 V2 |V2|2 · · · V2V
∗
n

...
...

. . .
...

V ∗1 Vn V ∗2 Vn · · · |Vn|2

 ; (2)

this implies that W must be positive semidefinite (PSD) (W �
0) with rank 1. This way, the complex power in (1) is linearly
related to the entries of W as follows

Si = Tr (HiW ) , (3)

with Hi := Y HEi, where Ei := eie
T
i is the outer product of

the Kronecker vector ei with all entries zero except the ith

one. Further defining Eik := (ei − ek) eTi , the complex power
flowing from bus i to k over line (i, k) ∈ E is given by

Sik = Tr (AikW ) , (4)

where Aik := −eTk Y HeiEik.

B. Ideal Voltage Regulation Transformer Model

Consider the simple 3-bus network in Fig. 1, comprised
of two transmission lines, constant PQ loads, and a voltage
regulation transformer attached to bus pt. It is assumed that
the primary-side of the regulator is always closest to the
distribution feeder.

The transformer tap position ηt ∈ {η, η} is a discrete
variable with 32 values, where each tap change corresponds to

1The notation in this section is for single-phase, Via, Vib, Vic will be used
to distinguish the phases on bus i for a three-phase network.

y1pt yptstV1 Vpt Vst

Figure 1: 3-Bus System

a 5/8% change of nominal voltage and {η, η} are the minimum
and maximum percentages of nominal voltage, respectively
[9]. Transformers are commonly replaced by a two-port block
whose impedance is dependent on the tap position and appears
nonlinearly in the admittance matrix of the equivalent circuit
model [8]. Figure 2 shows the modified circuit used to remove
the nonlinearity of the transformer tap position. We introduce
a virtual bus s′t on the secondary-side of the ideal transformer.
Typically, core losses on distribution system voltage regulation
transformers are generally ignored [10]. However, one can
refer the voltage regulation transformer impedance to the
secondary side and include it with the line parameter yptst .
The set of buses now becomes

N = N ∪Ns′ , (5)

where Ns′ := {s′t | st ∈ Ns} is the set of virtual buses added
to the secondary side of each transformer. The set of edges is
further modified as

E = {E\Et} ∪ {(s′t, st) | t ∈ T } . (6)

We also update the edge-set for the transformers as Et :=
{(pt, s′t) | t ∈ T }. Note that Y s′tst

= Yptst and Y ptst = 0 in
the updated admittance matrix.

y1pt yptstV1 Vpt Vs′t Vst

Spts
′
t

Figure 2: Equivalent 3-Bus System

In the transformer model, we assume that the network is
electrically disconnected at (pt, s′t); thus, we capture the power
Spts′t

through the transformer by introducing a PQ load and
source at buses pt and s′t, respectively. The tap ratio can be
eliminated by adding the following constraints

η2 |Vpt |2 ≤
∣∣Vs′t∣∣2 ≤ η2 |Vpt |2 (7a)

Re {Vpt
} × Im

{
Vs′t
}

= Re
{
Vs′t
}
× Im {Vpt} (7b)

Re {Vpt
} × Re

{
Vs′t
}
≥ 0 (7c)

Im {Vpt
} × Im

{
Vs′t
}
≥ 0, (7d)

where the last three constraints (7b)–(7d) ensure that the
transformer is not a phase-shifter, which is equivalent to
Wpts′t

= Ws′tpt
≥ 0 for the matrix W . Once the solution

is determined, the tap position of transformer t ∈ T can be
obtained by ηt =

√
V 2
s′t
/V 2

pt
=
√
Ws′ts

′
t
/Wptpt

.
When considering the updated transformer model, the power

flow equations in (3) are modified as follows:



1) No Transformer: If there is no transformer incident to
bus i, then the power flow equation remains unchanged and is

Si = Sgen
i − Sld

i = Tr (HiW ) , ∀i ∈ N\{Np ∪Ns′} , (8)

where the generation Sgen
i and load Sld

i are positive quantities.
2) Ideal voltage regulation transformer model: Since the

tap position ηt for t ∈ T is not included in the formulation
of the admittance matrix, we compare the input/out power of
the ideal transformer. If bus i is incident to the primary-side
of a transformer, then the power flow equation becomes

Spt − Spts′t
= Tr (HptW ) , ∀pt ∈ Np, (9)

or if it is incident to the secondary side, then we have

Spts′t
= Tr

(
Hs′t

W
)
, ∀s′t ∈ Ns′ . (10)

Notice that all of the H matrices here correspond to the
updated admittance matrix Y .

C. Problem Formulation

Inspired by the rank relaxation technique for OPF as for-
mally discussed in [5]–[7], one can drop the rank-1 condition
on W that arises from (2) and formulate the convex trans-
former tap position problem as

min
W�0,Spts

′
t

Re {Tr (A12W )} (11)

such that

Tr (HiW )− Si = 0, ∀i ∈ N\{Np ∪Ns′} (12)

Tr (HptW )− Spt + Spts′t
= 0, ∀pt ∈ Np, (pt, s

′
t) ∈ Et (13)

Tr
(
Hs′t

W
)
− Spts′t

= 0,∀s′t ∈ Ns′ , (pt, s
′
t) ∈ Et (14)

and

V 2 ≤ Wii ≤ V
2
, ∀i ∈ N\Ns′ (15)

η2Wptpt
≤Ws′ts

′
t
≤ η2Wptpt

, ∀ (pt, s′t) ∈ Et (16)

and
Wpts′t

=Ws′tpt
≥ 0, ∀ (pt, s′t) ∈ Et. (17)

The cost function in (11) minimizes the generation required
from the transmission network through the feeder. This choice
for the objective functions follows naturally since power
generation from the utilities is generally not located at the
distribution level. Line flow constraints are excluded for sim-
plicity, but can easily be included as additional inequality
constraints, see e.g., [5]–[7].

III. SINGLE-PHASE RANK CONDITION

This section aims to show why the ideal transformer model
in Section II-C fails to yield a rank-1 solution to the problem
in (11)–(17) even for single-phase tree networks.

Suppose that the system contains a single voltage regulation
transformer, which introduces a non-overlapping two-area par-
tition for the augmented network (N , E). Let W (1) and W (2)

denote the two submatrices of W corresponding to the two-
area partition induced. Hence, the optimization cost function
in (11) turns out to be only dependent on W (1). Moreover,

all the constraints in (12)–(14) only couple the power flow
quantities within each area and also the transformer power
flow variable Spts′t

. The entry-wise voltage bound constraints
in (15) are local for each area, while only the transformer
voltage regularization constraint (16) would involve entries
from both submatrices. This way, it is possible compactly write
the local constraints in (12)–(15) as follows:

W (1) ∈ C(1){Spts′t
} (18)

W (2) ∈ C(2){Spts′t
}, (19)

where both set constraints are defined by the power injection
quantities within each area and Spts′t

.
Proposition 1: The convex SDP relaxation problem with

matrix W can be recast as one involving its three submatrices:

min
W (1),W (2),Wpts

′
t
,Spts

′
t

Re
{

Tr
(
A

(1)
12 W

(1)
)}

, (20)

subject to (16)–(19), and the following PSD constraints

W (1) � 0,W (2) � 0,

[
Wptpt

Wpts′t
Wpts′t

Ws′ts
′
t

]
� 0. (21)

Proof: In order to prove the result, we leverage the results
in [11] for completing a partial Hermitian matrix to a full
PSD one by using the so-termed graph “chordal” property. A
chordal graph has no minimal cycles with number of nodes
greater than 3. To this end, construct a graph G̃ with the node
set E , with all its edges corresponding to the off-diagonal
entries in the three submatrices in (21). It is possible to show
that this graph G̃ is chordal; and the reasons are two-fold.
First, there is no cycle that contain nodes from both two
areas as defined by the voltage regulation transformer partition.
Second, all the minimum cycles within each area have only
three nodes since every subnetwork forms a complete graph.
Interestingly, for the chordal graph G̃, the submatrices in (21)
correspond to its three maximal cliques. The Hermitian matrix
completion results in [11] establish that if all the given entries
in matrix W induce a chordal graph with all submatrices
corresponding to the graph’s maximum cliques are PSD, then
it is possible to complete W to a PSD matrix. Leveraging this
claim, one can form a full PSD matrix W with its three PSD
submatrices in (21) given. Since the completed W would be a
feasible solution to the original problem (11), the reformulated
problem (20) attains the minimum objective no smaller than
the original one (11).

Reversely, the PSD property of W implies that all its
submatrices are PSD, including those three in (21). Hence,
the original problem (11) would at least attain a minimum
cost no smaller than that of (20).

Based on the two arguments above, the equivalence of
the two problems follows easily since they attain the same
objective at the optimum. �

The constraint Wpts′t
≥ 0 for the reformulated problem in

Proposition 1, together with the PSD condition for the 2 × 2
submatrix in (21), yields the following equivalent condition

0 ≤Wpts′t
≤
√
Wptpt

Ws′ts
′
t
, (22)



where the rank-1 of W is satisfied only if the right-side strict
equality holds. Since the variable Wpts′t

is solely present in
the condition in (22), any optimal solution to the reformulated
problem can be easily completed to a matrix W with rank
greater than 1, by setting Wpts′t

= 0 without sacrificing the
optimality. This way, the corresponding solution to the original
problem (11) would be of at least rank 2. Next, we provide an
example to demonstrate the issues with non-rank-1 solutions
to the problem in (11)–(17).

Example 1: Consider the 3-bus network in Fig. 1, and
further assume that it is a lossless system and the voltage
regulation transformer is ideal. The primary side of the trans-
former is the bus 2 with no load, while the secondary-side
bus 3 has the only load with the known complex value S3.
The lossless network assumption implies that y12 = y23 = 0.
With the ideal voltage regulation transformer and y23 = 0, it is
possible to simply merge the virtual bus 3′ with the original
load bus 3 in the equivalent circuit in Fig. 2. It is easy to
show that the minimum cost in (11) equals to Re{S2}, with
no system loss and the transformer power flow S23 = S3.
Interestingly, the tap position is not essential for attaining the
minimum cost, hence for simplicity consider the case where
W22 = W33 = 1. Similarly, the variable W23 does not affect
the achievable objective either, so it can take any value in the
interval [0, 1] to satisfy the PSD constraint and (17), as given in
(22). There exist multiple optimal solutions with 0 ≤W23 < 1
but those corresponding W matrices would have rank of at
least 2. This simple example demonstrates the rank issue in
the problem in (11)–(17). �

Although this section only discusses the case of a single
transformer, it is possible to extend to multiple transformers
where the rank of the optimal W would increase as well. This
is possible by partitioning the system into (nt+1) areas for nt
transformers, and showing that the constraint (17) would fail to
satisfy the rank condition for any two neighboring areas. In the
next section, we intend to solve this problem by introducing
a modified (lossy) voltage regulation transformer model.

IV. NON-IDEAL VOLTAGE REGULATION
TRANSFORMER MODEL

Before introducing our model, we will first discuss some
issues pertaining the ideas discussed in Section III to three-
phase networks. Suppose that we have a single-phase network
with nt ≥ 2. We can solve for W (1), . . . ,W (nt), where each
area will have its own local slack bus and the correct phase
angles can be computed recursively downstream of the feeder
using the boundary condition Angle{Vpt

} = Angle{Vs′t} ∀t ∈
T . Now, consider a three-phase network; then, the constraint
in (17) prevents a phase shift across the transformer on each
phase. It is infeasible to enforce the correct phase angle offset
for the three phases of the slack bus at each area. This way, the
incorrect three-phase angle offsets would propagate in the rest
of the area, which prevents us from obtaining a meaningful
solution first and then correcting it with the aforementioned
the recursive scheme. Hence, unlike the single-phase system,

y1pt yptstztV1 Vpt

Spt Spts
′
t

Spts
′
t

Vs′t Vst

Figure 3: Equivalent 3-Bus System

the angles between the phases have to be enforced on each
side of the transformer.

To address this problem, we propose to modify the original
model that removes the transformer tap positions from the
power flow constraints in the minimization problem. As illus-
trated in Fig. 3, rather than replacing the voltage regulation
transformer with an ideal transformer, we instead introduce
a virtual transmission line that has a large impedance zt,
the choice of which is discussed later. The power transferred
through transformer Spts′t

remains as the load or source to be
optimized on the primary or secondary side of the transformer,
respectively. As the impedance |zt| → ∞, the proposed model
here would reduce to the original one discussed in Section II.
Before reaching this limiting case, the system remains elec-
trically connected and there will be a current through (pt, s

′
t),

which is the scenario of interest to us. As demonstrated by
the numerical tests, the results of which are discussed in
Section V, one can ensure that the actual power flow will
almost mimic the original electrically disconnected model with
the appropriate value of zt; i.e., Spts′t

captures almost all
of power flow through transformer t. More importantly, it is
possible to maintain the phase angles on both sides of the
transformer, as θpt ≈ θs′t . This is highly attractive since the
modified transformer model in essence allows us to solve an
equivalent OPF problem as the original model, while enforcing
the correct phase shift for the transformers. Notice that the set
of buses would stay the same as in (5), and the transmission
lines will include the newly introduced virtual lines too, as
given by

E = {E\Et} ∪ {(s′t, st) | t ∈ T } ∪ Et. (23)

A. Transformer Impedance

Consider a simple 2-bus system with V1∠θ1, V2∠θ2, and
z = r+jx, where bus 1 is the primary side of the transformer.
The power loss on the line is given by

Sloss =
1

z∗
V 2

=
r + jx

r2 + x2
(
V 2
1 + V 2

2 − 2V1V2 cos (θ1 − θ2)
)
.

(24)

Since we are not working with a phase-shifting transformer,
we can simplify the expression above by assuming that θ1 ≈
θ2. Then, by defining the turns ratio as a = N2/N1, we obtain
that

Ploss =
r

r2 + x2
V 2
1

(
a2 − 2a+ 1

)
, (25)

Qloss =
x

r2 + x2
V 2
1

(
a2 − 2a+ 1

)
, (26)



where a ∈ [0.9, 1.1] for the per unit voltages. In the case
studies in Section V, we minimize generation of active power
losses and choose r � 0 and x = 0. For a three-phase system,
if zt is too large, then the system behaves as an open circuit
and yields the incorrect results discussed in Section II and
III. Otherwise, if zt is too small, then the power loss on the
line will no longer be negligible. In numerical simulations, we
observed that selecting the value of r to be a couple orders
of magnitude larger than that of the neighboring lines would
lead to the best results.

B. Problem Formulation

The constraints on the off-diagonal entries in (17) are no
longer required with the system electrically connected; thus,
the relaxed convex problem becomes

min
W�0,Spts

′
t

Re {Tr (A12W )} (27)

such that

Tr (HiW )− Si = 0, ∀i ∈ N\{Np ∪Ns′} (28)

Tr (Hpt
W )− Spt

+ Spts′t
= 0, ∀pt ∈ Np, (pt, s

′
t) ∈ Et (29)

Tr
(
Hs′t

W
)
− Spts′t

= 0,∀s′t ∈ Ns′ , (pt, s
′
t) ∈ Et (30)

and

V 2 ≤ Wii ≤ V
2
, ∀i ∈ N\Ns′ (31)

η2Wptpt
≤Ws′ts

′
t
≤ η2Wptpt

, ∀ (pt, s′t) ∈ Et. (32)

If a cost function different from the one in (27) is selected that
does not maximize |Spts′t

|, then we can introduce an additional
constraint on the power transferred through the line (pt, s

′
t) as

follows: ∣∣Tr(Apts′t
W )
∣∣ ≤ ε, (33)

where Tr(Apts′t
W ) should be real and ε ≈ 0 is some tolerance

for the optimization problem. Note that this cannot be a strict
equality constraint because there will be a power loss through
this line when ηt 6= 1.

V. CASE STUDIES

The case studies presented in this section are derived from
the IEEE 13-bus, three-phase, unbalanced distribution system
given in [12]. Figure 4 shows the 15-bus three-phase topology
used. Buses 650 and 651 were added between the Feeder and
the voltage regulation transformer so that the system partition
did not occur at the slack bus. Bus 693 was added to account
for the distributed load along line (632, 671), and bus 692 was
removed since it corresponded to a closed switch connected
between buses 671 and 675.

A. Single-Phase Case

The single-phase 14-bus system is obtained from phase C
only since it is present on every bus except for bus 652. For all
three cases, the objective function used for the minimization
problem is

min
W,Spts

′
t

Re {Tr (AFeeder,651W )} , (34)

Feeder

651

650

AVR

632

693

671

680

645646 633 634

684611

652

675

Three-Phase Two-Phase Single-Phase

Figure 4: 15 Bus Distribution Network

which is the power transferred from the feeder across the
transmission line (Feeder, 651).

The results are shown in Table I; as expected, the rank
of W from the relaxed formulation in Section II does not
satisfy the rank-1 constraint of the unrelaxed problem, i.e.,
rank(W ) = 2. However, when the system is partitioned around
the transformer, we obtain the same W with the submatrices
W (1) and W (2), as defined in Section III satisfying the rank-1
condition. The proposed formulation in Section IV produces
a rank-1 solution with a 0.03% change in the objective
function and a 0.4% change in the power sinked/sourced at
the primary/secondary sides of the transformer. There were
no changes in the bus voltages and tap positions obtained by
any method. The impedance chosen for zt was purely resistive
and its magnitude was 100 times that of the neighboring
transmission lines. The power |St| transferred through zt was
0.003 p.u., which |St| � |Spts′t

|.
B. Three-Phase Case

The transformer model in Section IV is the only model
applicable to the three-phase simulation. In this case, zt is a
purely real diagonal matrix whose entries have a magnitude
100 times larger than that of their neighboring transmission
lines. The objective function

min
W�0,Spts

′
t

∑
i∈K

Re {Tr (HiW )} (35)

was used to minimize the three-phase power at the feeder,
where K = {Feeder(a),Feeder(b),Feeder(c)}. This expression
was chosen to account for the power transferred through the
mutual impedance across the the 4-wire transmission line.



Table I: SINGLE-PHASE CASE RESULTS

Ideal Transformer Partition Method Non-Ideal Method

Rank of W 2 W (1) ⇒ 1, W (2) ⇒1 1

Objective [p.u.] 8.5776 8.5776 8.5806

Vpt [p.u.] 1.006∠− 0.285◦ 1.006∠− 0.285◦ 1.006∠− 0.285◦

Vs′t
[p.u.] 1.088∠− 0.285◦ 1.088∠− 0.285◦ 1.088∠− 0.285◦

Vst [p.u.] 1.05∠− 2.817◦ 1.05∠− 2.817◦ 1.05∠− 2.817◦

|Spts
′
t
| [p.u.] 9.219 9.219 9.255

|St| [p.u.] 0 0 0.003

Tap Position -13 -13 -13

Table II: THREE-PHASE CASE RESULTS

Phase A Phase B Phase C

Vpt [p.u.] 1.009∠− 0.06◦ 1.007∠− 120.16◦ 1.008∠119.77◦

Vs′t
[p.u.] 1.068∠− 0.06◦ 1.078∠− 120.16◦ 1.074∠119.77◦

Vst [p.u.] 1.050∠− 1.41◦ 1.008∠− 122.04◦ 1.045∠117.70◦

|Spts
′
t
| [p.u.] 6.60 9.58 9.16

|St| [p.u.] 0.002816 0.002893 0.002248

Tap Position -9.32 -11.24 -10.52

The results are shown in Table II. The solution of W was
rank 1, the cost function has a value of 23.48 p.u., and the
continuous tap positions for the three-phase transformer are
{−9.32,−11.24,−10.52}. We have also performed an exten-
sive search by enumerating all possible combinations of the
discrete tap values for all three phases. The minimum cost was
attained at 23.47 with the tap positions being {−9,−11,−10},
for the three phases, respectively. Clearly, the tap values in
Table II exhibit competitive performance compared to the best
solution, while the computational complexity of our method
stays gracefully with the number of transformers growing
as opposed to the enumeration. This suggests that the tap
positions should be truncated to the nearest discrete value
rather than being rounded.

VI. CONCLUDING REMARKS

In this paper, we developed a method to optimally set
the taps of voltage regulation transformers in distribution
networks. We demonstrated the applicability of this method
via numerical examples involving single- and three-phase
test systems. The main advantage of the our method, with
respecting to existing approaches, is that our method will
return a rank-1 solution if it exists and can scale up to a three-
phase network.

We do not have a proof yet for whether or not the SDP
relaxation will work on three-phase tree networks in general,
however, we intend to address this problem in future work.
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