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Abstract—This paper proposes a method to estimate transmis-
sion line flows in a power system during the transient period
following a loss of generation or increase in load contingency
by using linear sensitivity injection shift factors (ISFs). Tradi-
tionally, ISFs are computed from an offline power flow model
of the system with the slack bus defined. The proposed method,
however, relies on generalized ISFs estimated via the solution
of a system of linear equations that arise from high-frequency
synchronized measurements obtained from phasor measurement
units. Even though the generalized ISFs are obtained at the pre-
disturbance steady-state operating point, by leveraging inertial
and governor power flows during appropriate time-scales, they
can be manipulated to predict active transmission line flows
during the post-contingency transient period.

I. INTRODUCTION

Power system operational reliability is monitored and main-

tained via online static and dynamic security assessment tools.

By using these, operators can ensure the system is capable of

withstanding a wide variety of disturbances, such as sudden

loss of a generator or a transmission line. For example,

dynamic security assessment may include consideration for

post-fault system stability. On the other hand, static security

assessment involves real-time N-1 contingency analysis, in

which operators determine whether or not the system will meet

operational reliability requirements in case of outage in any

one particular asset and, in turn, any corrective actions required

to ensure operation in a secure state [1].

With an up-to-date model of the system, operators can

perform the N-1 security analysis by repeatedly solving the

nonlinear power flow equations. However, for a large power

system with many contingencies to consider, this process

could take prohibitively long periods of time. One way to

gain computational speed in contingency analysis is to use

an estimate of the current operating point together with linear

distribution factors (DFs), such as power transfer distribution

factors (PTDFs), and line outage distribution factors (LODFs),

obtained from an approximate power flow model of the system

(see, e.g., [2]). These DFs can all be derived from the so-called

injection shift factor (ISF), which approximates the change in

active power flow across a transmission line due to a change

in generation or load at a particular bus. Conventionally, the

derivation of these ISFs requires an accurate model of the

system that reflect current operating conditions; hence we refer

to these as “model-based” or “conventional” ISFs.

In [3], we proposed a method to estimate ISFs in near real-

time without relying on a power flow model of the system. The

core idea behind this method is to find the solution of a system

of linear equations formulated using active power bus injection

and line flow data obtained from phasor measurement units

(PMUs). In [3], we assumed an overdetermined system, with

more equations than unknown ISFs, and obtained the solution

via linear least-squares errors (LSE) estimation. The method

is shown to be adaptable to undetected system topology

and operating point changes, and thus represents significant

improvement over the traditional one that relies on an accurate

power flow model of the system. Using ISFs obtained via

the measurement-based estimation method in [3], we can

accurately predict transmission line flows throughout the sys-

tem under the new steady-state operating point, following a

contingency involving, e.g., loss of generation or increase in

load.

Static security assessment tools are, in general, concerned

with the system in steady-state operation, i.e., whether or

not the system remains operationally reliable once it reaches

steady-state under the new operating point following a dis-

turbance. On the other hand, dynamic security assessment

tools are used to determine whether or not the system is able

to withstand the transients caused by a disturbance prior to

reaching steady-state operation at the new operating point [4].

Traditionally, DFs have been used to verify system operational

reliability in steady-state operation only (see, e.g., [2], [5]–

[7]). To assess whether or not the system can withstand a

contingency, however, it is also important to determine the dis-

tribution of power injections on transmission lines throughout

the system during the transient post-disturbance period.

In this paper, we use ISFs obtained via the measurement-

based method from [3] to describe transient phenomena associ-

ated with loss of generation or increase in load contingencies.

Our analysis is based on the propagation of disturbance over

time-scales for which inertial and governor power flows are

valid (see, e.g., [8]). By leveraging these power flow problem

formulation variants, we show that the measurement-based

ISFs are general in the sense that they can be used to predict

the active power flowing through transmission lines during the

transient period between the pre- and post-disturbance steady-

state operating points. Thus, in the remainder of this paper,

we refer to these as “generalized” ISFs.
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Fig. 1: Conventional and generalized ISF conceptualization.

II. CONVENTIONAL INJECTION SHIFT FACTORS

Distribution factors are linearized sensitivities used in con-

tingency analysis and remedial action schemes [2]. A key

distribution factor is the injection shift factor (ISF), which

quantifies the redistribution of power through each transmis-

sion line in a power system following a change in generation

or load on a particular bus in the system. In essence, the ISF

captures the sensitivity of the flow through a line with respect

to changes in generation or load. In this section, we outline the

conventional ISF definition that relies on designating a slack

bus, describe the model-based approach to compute them, and

motivate the need for a measurement-based approach.

A. Conventional ISF Definition

Consider a power system with n buses. Conventionally, the

ISF of line Lk-l (assume positive real power flow from bus

k to l) with respect to bus i, denoted by Ψi
k-l, is a linear

approximation of the sensitivity of the active power flow in

line Lk-l with respect to the active power injection at node i,
with the slack bus defined and all other quantities constant.

Suppose Pi varies by a small amount ∆Pi, and denote by

∆P i
k-l the change in active power flow in line Lk-l resulting

from ∆Pi. Then, it follows that

Ψi
k-l :=

∂Pk-l

∂Pi
≈

∆P i
k-l

∆Pi
. (1)

The approximation in (1) is shown conceptually in Fig. 1a.

Traditionally, ISFs, along with other DFs, have been computed

offline based on a power flow model of the system, including

its topology and pertinent parameters, and with the slack

bus defined. Next, we describe this model-based approach to

compute conventional ISFs.

B. Model-Based Computation Approach

Let Vi and θi, respectively, denote the voltage magnitude

and angle at bus i; additionally, let Pi and Qi, respectively,

denote the active and reactive power injection (generation or

load) at bus i. Then, the static behavior of a power system

can be described by the power flow equations, which we write

compactly as

g(x, P,Q) = 0, (2)

where x = [θ1, . . . , θn, V1, . . . , Vn]
T , P = [P1, . . . , Pn]

T ,

Q = [Q1, . . . , Qn]
T , and g : R2n × R

n × R
n → R

2n. In (2),

the dependence on network parameters, such as line series and

shunt impedances, is implicitly considered in the function g(·).

R1,2 + jX1,2

R2,3 + jX2,3R1,3 + jX1,3

P3

P2P1

V1∠θ1 V2∠θ2

V3∠θ3

Fig. 2: Network topology for 3-bus system.

Suppose a solution to (2) is obtained at (x0, P0, Q0), i.e.,

g(x0, P0, Q0) = 0, and assume g(·) is continuously differen-

tiable with respect to x and P at (x0, P0, Q0). Let x = x0+∆x
and P = P0 + ∆P ; then, by assuming that ∆P and ∆x are

sufficiently small, we can approximate g(x, P,Q0) as

g(x, P,Q0) ≈ g(x0, P0, Q0) + J∆x +D∆P, (3)

where

J =
∂g

∂x

∣

∣

∣

(x0,P0,Q0)
and D =

∂g

∂P

∣

∣

∣

(x0,P0,Q0)
.

Since g(x0, P0, Q0) = 0, and ∆x and ∆P are assumed to be

small, we have that g(x, P,Q0) ≈ 0. Then, it follows from (3)

that

0 ≈ J∆x +D∆P. (4)

Further, since J is the Jacobian of the power flow equations,

which we assume to be invertible around (x0, P0, Q0), we can

rearrange (4) to obtain

∆x ≈ −J−1D∆P. (5)

Next, we consider the active power flow through line Lk-l

as Pk-l = hk-l(x), where hk-l : R2n → R. Under the same

assumption of ∆x being small, we can obtain an expression

for small variations ∆Pk-l due to ∆x as follows:

∆Pk-l = c∆x, (6)

where c = ∂hk-l

∂x

∣

∣

x0

. Substituting (5) into (6), it follows that

∆Pk-l ≈ −cJ−1D∆P. (7)

Next, we show how to obtain the ISFs for a 3-bus system

using the method outlined above.

Example 1 (3-bus Example): In this example, we consider

a 3-bus system, the one-line diagram of which is shown in

Fig. 2, and the parameters of which are listed in Table I.

In this system, bus 1 is set as the slack bus. Let Ψk-l =
[Ψ1

k-l,Ψ
2
k-l,Ψ

3
k-l]. We compute the conventional ISFs for this

system using (7) and obtain

Ψ1-2 =
[

0 −0.7523 −0.2712
]

,

Ψ2-3 =
[

0 0.2480 −0.2710
]

,

Ψ1-3 =
[

0 −0.2480 −0.7290
]

.

Note that, by definition, the ISFs with respect to the slack bus

are 0. �



TABLE I: Parameter values for 3-bus system shown in Fig. 2.

All quantities are in p.u. unless otherwise noted.

V1 V2 P1 P2 P3 Q3 H1 [s] H2 [s]

1.04 1.025 1.55931 0.7910 2.35 0.5 8 3.01

R1,2 R2,3 R1,3 X1,2 X2,3 X1,3 1/R1 1/R2

0.01 0 0 0.085 0.1610 0.0920 25 25

C. Need for a Measurement-Based Computation Approach

Since the derivation of the sensitivity vector in (7) relies on

the linearization of the power flow equations, they are valid

only for the system during steady-state operation. Next, we

discuss a method to compute generalized ISFs using only PMU

measurements obtained in near real-time without relying on

a power flow model of the system. We show that they can

be used to predict line flows during transients between two

steady-state operating points.

III. GENERALIZED INJECTION SHIFT FACTORS

In [3], a measurement-based ISF estimation method is

proposed. This method relies only on inherent fluctuations in

measurements of load and generation and does not employ a

power flow model. The method is shown to be adaptive to

operating point and topology changes, and is an improvement

over the model-based approach described in Section II-B. In

this section, we define the generalized ISF and show how the

measurement-based ISF estimation approach proposed in [3]

can be used to obtain these.

A. Generalized ISF Definition

Consider the same power system described in Section II-A,

with the following exception. A real power system does

not operate with a single slack bus that absorbs all power

imbalances in the system. To this end, we define the concept

of generalized ISFs, which as we show in Section IV, they

can be used to recover the traditional definition of the ISF

given in (1). Suppose Pi varies by a small amount ∆Pi and

denote by ∆P i
k-l the change in active power flow in line Lk-l

(measured at bus k) resulting from ∆Pi. Then, we define the

generalized ISF of line Lk-l with respect to bus i as

Γi
k-l :=

∆P i
k-l

∆Pi
. (8)

The definition in (8) is shown conceptually in Fig. 1b. Next,

we describe the method used in [3] to estimate generalized

ISFs from real-time measurements.

B. Measurement-Based Estimation of Generalized ISFs

Let Pi(t) and Pi(t + ∆t), respectively, denote the active

power injection at bus i at times t and t + ∆t, ∆t > 0
and small. Define ∆Pi(t) = Pi(t + ∆t) − Pi(t) and denote

the change in active power flow in line Lk-l resulting from

∆Pi(t) by ∆P i
k-l(t). Then, according to the approximation

in (1), we need ∆P i
k-l(t), which is not readily available from

PMU measurements. We assume that the net variation in

active power through line Lk-l, denoted by ∆Pk-l(t), however,

is available from PMU measurements. We express this net

variation as the sum of active power variations in line Lk-l

due to active power injection variations at each bus i:

∆Pk-l(t) = ∆P 1
k-l(t) + · · ·+∆Pn

k-l(t). (9)

By substituting (8) into each term in (9), we can rewrite (9)

as

∆Pk-l(t) ≈ ∆P1(t)Γ
1
k-l + · · ·+∆Pn(t)Γ

n
k-l, (10)

where Γi
k-l ≈

∆P i
k-l

∆Pi
, i = 1, . . . , n. Suppose m + 1 sets of

synchronized measurements are available. Let

∆Pi[j] = Pi((j + 1)∆t)− Pi(j∆t),

∆Pk-l[j] = Pk-l((j + 1)∆t)− Pk-l(j∆t),

j = 1, . . . ,m; and define

∆Pk-l =
[

∆Pk-l[1] · · · ∆Pk-l[j] · · · ∆Pk-l[m]
]T

,

∆Pi =
[

∆Pi[1] · · · ∆Pi[j] · · · ∆Pi[m]
]T

.

Let Γk-l = [Γ1
k-l, . . . ,Γ

i
k-l, . . . ,Γ

n
k-l]; then, it follows that

∆Pk-l =
[

∆P1 · · · ∆Pi · · · ∆Pn

]

ΓT
k-l. (11)

For ease of notation, let ∆P represent the m × n matrix

[∆P1, . . . ,∆Pi, . . . ,∆Pn]; then, the system in (11) becomes

∆Pk-l = ∆PΓT
k-l. (12)

If m ≥ n, then (12) is an overdetermined system. Further,

assuming the ISFs are approximately constant over the m+1
measurements, then we can solve for Γk-l via least-squares

errors (LSE) estimation as follows [3]:

Γ̂T
k-l = (∆PT∆P )−1∆PT∆Pk-l. (13)

Next, we estimate the generalized ISFs for a 3-bus system.

Example 2 (3-bus System): In this example, we consider

again the 3-bus system in Fig. 2. The synchronous generators

at buses 1 and 2 are modeled with the subtransient machine

dynamic model equipped with dc exciter and turbine governor

(see, e.g., [4]). In order to simulate fluctuations in active power

demand, we generate random time-series data as

Pi[j] = P 0
i [j] + σν,

where P 0
i [j] is the nominal active load at bus i and σν is a

pseudorandom value drawn from a normal distribution with 0-

mean and standard deviation σ. In this example, we generate

random load data for only bus 3, with σ = 0.03 p.u. The

dynamic simulation tool Power System Toolbox [9] is used

throughout to obtain relevant transmission line flow measure-

ments from synthetic power injections profiles. Using (13) in

conjunction with 60 line flow and power injection measure-

ments (collected at 30 samples per second), the generalized

ISFs are estimated as

Γ̂1-2 =
[

−2.6408 −3.3967 −2.9131
]

,

Γ̂2-3 =
[

−3.6408 −3.3967 −3.9131
]

,

Γ̂1-3 =
[

3.6408 3.3967 2.9131
]

.
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(a) Active power flow across line L1-2.
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(b) Active power flow across line L2-3.
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(c) Active power flow across line L1-3.

Fig. 3: Line flows in 3-bus system due to 0.1 p.u. increase in active power demand at bus 3.

Note that Γ̂k-l’s above are distinctly different from the conven-

tional ISFs Ψk-l’s computed in Example 1. Next, we show how

the conventional ISFs can be recovered from the generalized

ISFs. �

IV. APPLICATION OF GENERALIZED ISFS

The generalized ISFs obtained via the measurement-based

method described in Section III can be immediately utilized

to estimate the active transmission line flows at a new steady-

state operating point, following a loss of generation or increase

in load contingency. In this section, we first describe how

conventional ISFs can be recovered from generalized ones.

We also describe the application of generalized ISFs estimate

line flows during the post-disturbance transient period.

A. Obtaining Conventional ISFs

To motivate the recovery of other ISFs from generalized

ISFs, we introduce the power transfer distribution factor

(PTDF). The PTDF, denoted by Φij
k-l, approximates the sen-

sitivity of the active power flow in line Lk-l with respect to

an active power transfer of a given amount of power, ∆Pt,

injected at bus i and withdrawn at bus j [10]. Thus, we have

∆Pk-l ≈ Φij
k-l∆Pt, (14)

where the PTDF Φij
k-l = Γi

k-l − Γj
k-l.

Based on the PTDF described in (14), we note that the

conventional ISF is simply the sensitivity of the active power

flow across line Lk-l with respect to a power transfer from

bus i to the slack bus. Thus, we can recover conventional

ISFs from generalized ones as follows:

Ψ̂i
k-l = Γ̂i

k-l − Γ̂s
k-l, (15)

where Γ̂s
k-l denotes the generalized ISF of line Lk-l with

respect to the designated slack bus.

Example 3 (3-bus System): In this example, we verify the

validity of (15) for the 3-bus system in Fig. 2 by applying it

to the Γ̂k-l’s from Example 2, as follows:

Ψ̂1-2 =
[

0 −0.7559 −0.2722
]

,

Ψ̂2-3 =
[

0 0.2441 −0.2722
]

,

Ψ̂1-3 =
[

0 −0.2441 −0.7278
]

.

We note that, indeed, the Ψ̂k-l’s are very similar to the Ψk-l’s

obtained in Example 1. �

B. Obtaining Participation Factor-Based ISFs

In reality, unlike the case described in (14), there may be

multiple simultaneous power transfers throughout the system.

Thus, in general, the change in active power flow through line

Lk-l is due to multiple injections and can be expressed as

∆Pk-l ≈ Γ1
k-l∆P1 + · · ·+ Γn

k-l∆Pn. (16)

In the context of contingency analysis, multiple generators

may respond to a loss in generation or increase in load. Thus,

suppose we are interested in the sensitivity of the active power

flow across line Lk-l with respect to a particular injection at

bus i, denoted as ∆Pi, and this injection is balanced by some

linear combination of injections at other buses, i.e.,

∆Pj = −αj∆Pi, j 6= i,
∑

j 6=i

αj = 1. (17)

The participation factors αj’s can arise from numerous fac-

tors, such as economic dispatch, governor participation, and

synchronous generator inertia. For example, generator inertia-

based participation factors are obtained with

αj =
Hj

∑

j Hj
, (18)

where Hj denotes the inertia of the synchronous generator

j in the system. Similarly, governor participation factors are

obtained as

αj =
1/Rj

∑

j 1/Rj
, (19)

where 1/Rj represents the steady-state governor gain for

generator j.

Denote by Ψ̂i
k-l the sensitivity of Pk-l with respect to Pi

with consideration for generator participation factors. Substi-

tuting (17) into (16), we obtain that ∆Pk-l ≈ Ψ̂i
k-l∆Pi, where

Ψ̂i
k-l = Γ̂i

k-l −
∑

j 6=i

Γ̂j
k-lαj . (20)

We note that the case of the conventional ISF is a special case

of (20) with αs, the participation factor corresponding to the

slack bus generator, equal to 1 and all other αj = 0, j 6= i, s.
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(a) Active power flow across line L5-7.
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(b) Active power flow across line L7-8.
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(c) Active power flow across line L3-9.

Fig. 4: Line flows in WECC 3-machine 9-bus system due to 0.5 p.u. increase in active power demand at bus 5.

The participation factor-based ISFs in (20) can be used to

predict the transient active power flowing through transmission

lines following a disturbance. Since the inertial response is

faster than that of the governor, we expect the inertia-based

ISFs obtained using (20) with (18) to be valid for a short time

after the disturbance. Following this time-scale, we expect that

the governor-based ISFs obtained using (20) with (19) to be

valid until participation factors arising from economic dispatch

become appropriate.

V. CASE STUDIES

In this section, we illustrate the concepts described above

with the 3-bus system and the Western Electricity Coordinating

Council (WECC) 3-machine, 9-bus system.

A. 3-Bus System

After estimating generalized ISFs for the 3-bus system in

Example 2 by relying on fluctuations in the load at bus 3, we

predict the active power flow across all three lines using (20),

given a 0.1 p.u. increase in the load at bus 3. Based on the

information provided in Table I, the inertia-based participation

factors for the two synchronous generators in the system are

α1 = 8/11.01 and α2 = 3.01/11.01. Using these factors

with (20), we obtain the change in active power flow through

the three lines as ∆P1-2 = 0.0066 p.u., ∆P2-3 = 0.0339 p.u.,

and ∆P1-3 = 0.0661 p.u. Similarly, the governor-based

participation factors are α1 = α2 = 1/2, and the corre-

sponding change in power flow are ∆P1-2 = −0.0106 p.u.,

∆P2-3 = 0.0394 p.u., and ∆P1-3 = 0.0606 p.u. We use Power

System Toolbox [9] to obtain relevant transmission line flow

measurements due to the change in load at bus 3, shown as the

solid trace in Fig. 3. Superimposed onto the actual active line

flows, in Fig. 3, we also plot the line flows predicted by the

inertia-based ISFs and governor-based ISFs in dash and dash-

dot traces, respectively. Indeed, we observe that the inertia-

based ISFs provide a good approximation to the line flows

immediately after the load increase, while the governor-based

ISFs provide a good approximation for longer time-scales.

B. WECC 3-Machine 9-Bus System

As in Example 2, we estimate the generalized ISFs for the 3-

machine 9-bus system and obtain inertia- and governor-based

ISFs. We validate the predicted line flows against actual power

flows obtained in dynamic simulations and plot results for

three lines in Fig. 4.

VI. CONCLUDING REMARKS

In this paper, we introduce the concept of generalized ISF,

which can be obtained via a measurement-based method.

Generalized ISFs can be used to estimate the active power

flow through transmission lines over time-scales for which

inertial and governor power flows are valid. Even though the

generalized ISFs are obtained at the pre-disturbance steady-

state operating point, we show, through numerical examples,

that they can be easily manipulated to predict transmission line

flow during the post-disturbance transient period.
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