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Abstract—In this paper, we propose a measurement-based
approach to the real-time economic dispatch (ED). The real-
time ED is a widely used market scheduling problem seeking
to economically balance electricity system supply and demand
and provide locational marginal prices (LMPs) while respecting
system reliability requirements. The ED is a convex optimization
problem with a linear or quadratic objective, typically the
minimization of generator costs or the maximization of social
surplus. The constraints capture power balance and network flow
capacity limits and are formulated using a linearized power flow
model. Our approach utilizes power system sensitivities estimated
from phasor measurement unit (PMU) measurements to reformu-
late the model-based power flow and network flow constraints.
The resulting measurement-based real-time ED overcomes the
vulnerabilities of the model-based real-time ED. The dispatch
instructions and LMPs calculated with our measurement-based
real-time ED accurately, and adaptively, reflect real-time system
conditions. We illustrate the strengths of the proposed approach
via several case studies.

I. INTRODUCTION

The majority of electricity consumers in the United States
are served by electricity procured in Independent System Oper-
ator (ISO)- or Regional Transmission Organization (RTO)-run
markets [1]. ISO/RTOs oversee large-scale market scheduling
procedures that consists of a sequence of forward markets
based on security-constrained unit commitment- and economic
dispatch-based algorithms (see, e.g., [2], [3]). The goal of
these processes is to schedule resources on various time-scales
such that the system operator can maintain the supply-demand
balance around-the-clock and satisfy operational and physical
constraints imposed by the electricity network. Moreover, the
markets outcome include the prices for energy, the locational
marginal prices (LMPs), and the prices for ancillary services
[4]. The LMPs are an important outcome of the market
clearing process and serve two primary functions: i) they
provide prices at which to settle energy supplied/consumed
by resources in the system; and ii) they provide the system
operator with an indication of the existence of localized
scarcity due to network constraints, which also indicates the
buses at which injections/withdrawals would have the highest
impact on relieving such congestion.

The so-called real-time economic dispatch (ED) in the real-
time electricity markets is the final stage in the scheduling
process at which LMPs are determined. The ED is a widely
used market scheduling problem seeking to economically bal-

ance electricity system supply and demand and provide LMPs
while respecting system reliability requirements. The real-time
ED has four primary components: i) the objective, typically the
maximization of social surplus, which consists of the producer
and consumer offer and bid functions, respectively, which are
commonly quadratic or piecewise-linear functions; ii) power
flow and network flow constraints obtained from a model of
the system; iii) equipment constraints, e.g., generator power
output limits; and iv) additional reliability-driven constraints,
e.g., reserve requirement and security constraints [8]. In those
ISOs/RTOs with a real-time ED, the process typically takes
place on a five-minute basis and determines LMPs and dis-
patch targets for resources for the next five minutes (see, e.g.,
[2], [3]).

In order to formulate power flow and network flow con-
straints, the real-time ED requires an up-to-date model of the
ISO/RTO’s electricity system and that of neighboring systems,
which is typically derived from the output of a state-estimator.
The state estimator-based model is vulnerable to errors due
to numerous phenomena, e.g., undetected changes in the
internal system topology and erroneous model parameters [5],
as well as inaccurate representations of neighboring systems
[6]. As such, the accuracy of the dispatch targets and LMPs
determined in the model-based real-time ED is coupled with
the accuracy of the system model and is subject to the
same vulnerabilities. Inaccurate dispatch targets and LMPs
have economic implications, such as sending incorrect local
price signals and over/under payment to resources, as well as
system reliability implications, such as unintended equipment
overloads and outages [7].

In this paper, we propose a measurement-based approach to
the real-time ED. Typically, the real-time ED is formulated
using model-based linear flow sensitivities, known as the
injection shift factors (ISFs), to represent network flows [8].
Our approach instead utilizes the measurement-based method
of estimating the ISFs described in [9]. As we demonstrate in
this paper, by moving away from a model-based representation
of the network, our approach virtually eliminates the impacts
of phenomena such as undetected changes in system topology
and erroneous model parameters on the dispatch targets and
LMPs determined in the real-time ED. In doing so, we ensure
that the real-time ED outcomes reflect actual real-time system
conditions.



Our approach relies on the availability of phasor measure-
ment units (PMUs), the preponderance of which in power
systems is facilitating the proliferation of a new generation
of operational tools that harness the very high frequency
and time synchronicity of their measurements (see, e.g., [10],
[11]). The use of PMU data in real-time operations has been
promoted as a means by which to circumvent the shortcomings
of the existing telemetry system, upon which state estimation
is based, and reduce the frequency of the occurrence and the
magnitude of the impact of preventable outages [7]. The real-
time ED process can likewise be enhanced by the deployment
of PMU measurements.

II. PRELIMINARIES

In this section, we first give an overview of the fundamental
components of the market-based electricity scheduling process
known as the real-time ED. Next, we review the calculation
of the measurement-based line sensitivities, which provide the
basis for our measurement-based approach to the real-time ED.

A. Model-Based Real-Time ED

The real-time ED is based on the classical optimal power
flow (OPF) [8]. The main components of the OPF are the
objective, typically the maximization of the social surplus
or the minimization of generator costs [12], the nonlinear
power flow and network flow constraints, and the equipment
operational constraints. For a number of computational and
practical reasons, the real-time ED is commonly formulated
using a simplified OPF formulation, the DC-OPF [13].

The DC-OPF relies on the so-called “DC” assumptions:
(i) the system is lossless, (ii) the voltage at each bus is
approximately equal to one p.u., (iii) the difference in the
voltage angles between at each pair of connected buses is small
[8]. These assumptions result in a linear approximation of the
nonlinear power flow and network flow constraints. There are
two primary approaches to the representation of the network
in the DC-OPF, the conventional “B-θ” approach and the ISF-
based approach [13]. In this work, we focus on the ISF-based
approach as it explicitly motivates our proposed measurement-
based real-time ED.

1) General Notation: We consider a system that consists
of N buses indexed by N = {1, . . . , N}, and L lines indexed
by L = {`1, . . . , `L}, where each `l is an ordered pair (n,m),
n,m ∈ N , representing a transmission line between buses
n and m, with the convention that positive flow on such a
line is in the direction from n to m. Moreover, let there be
G generators indexed by G = {1, . . . , G}, and D demands
indexed by D = {1, . . . , D}. Let Gn ⊆ G be the subset of
generators at bus n ∈ N , and let Dm ⊆ D be the subset of
loads at bus m ∈ N .

Let P g
i [k] be the output of generator i ∈ G at time k and

let P d
j [k] be the demand of load j ∈ D at time k with

the convention that P g
i [k] > 0 is a generator real power

injection into the system, and P d
j [k] > 0 is a load real

power withdrawal from the system. Then, define the vectors
of generation and demand as P g[k] = [P g

1 [k], . . . , P g
G[k]]

T

and P d[k] =
[
P d
1 [k], . . . , P d

D[k]
]T

, respectively. With these
quantities, we define the net injection at a bus n ∈ N at time
k as

Pn[k] =
∑
i∈Gn

P g
i [k]−

∑
j∈Dn

P d
j [k],

with the convention that Pn[k] > 0 is a real power injection
into the system. Then, define the vector of net injections at all
buses as P [k] = [P1[k], . . . , PN [k]]

T .
2) Power Balance Constraint: In the ISF-based network

representation, the voltage angles are not explicitly repre-
sented, rather the bus power balance and power flowing on
each line are written in terms of the system-wide power
balance, the linear flow sensitivities, and the bus injections.
The system-wide power balance for a time k can be written
in the form

1GP
g[k]− 1DP

d[k]− 1LP
`[k] = 0, (1)

where 1G, 1D, and 1L are all-ones row vectors of dimensions
G, D, and L, respectively, and P `[k] is the L-dimensional
column vector of line real power losses at time k, which we
will assume takes the form of a loss sensitivity-factor-based
loss model, such as that given in [14].

3) Network Flow Constraints: To represent the transmis-
sion network, we denote the L×N system incidence matrix
by A = [a1, . . . , ai, . . . , aN ], where ai is an L-dimensional
column vector the jth entry of which is equal to 1 if bus i is
the from bus of line j, −1 if bus i is the to bus of line j, and
zero otherwise. Further, let b denote the L-dimensional column
vector of branch susceptances, and define the diagonal L×L
branch susceptance matrix as Bb = diag{b}, where diag{·}
denotes a diagonal matrix such that Bb[i, i] = bi, ∀i, and the
N ×N nodal susceptance matrix as B = ATBbA.

The L × N linear flow sensitivity matrix, or ISF matrix,
denoted by Ψ, provides the basis of the ISF-based DC-OPF
network flow representation. An entry of Ψ, denoted by Ψ[l, i],
provides the sensitivity of the flow on line `l ∈ L to an
injection at bus i that is withdrawn at the slack bus. Under
the DC assumptions, Ψ can be calculated directly from the
network connectivity and parameters as follows,

Ψ = BbAB
−1. (2)

It is important to note that Ψ is invariant to changes in bus
injections/withdrawals and changes in the system topology.

With the model-based ISFs from (2), we define the vector
of line flows at a time k in terms of the bus injections as

P f [k] = ΨP [k], (3)

which are bounded above and below by the line upper and
lower limits, which are denoted by P̄ f and P f , respectively.

4) Objective Function: Let Oi(·) be the offer function of
generator i and Bd

j (·) be the bid function of demand j, which
are functions of the P g

i [k] and P d
j [k], respectively. These

functions represent the preferences of the generators (sellers)
and loads (buyers) and their willingness to accept or pay,
respectively, for electricity transacted in the real-time ED. The



objective of the real-time ED is the maximization of the social
surplus [12], which is defined for a time k as:

S (P g[k], P d[k]) =
∑
j∈D

Bj(P
d
j [k])−

∑
i∈G

Oi(P
g
i [k]). (4)

5) Model-Based Real-Time ED Problem Formulation:
Combining the objective in (4) with the constraints that result
from the power balance and network flow expressions in (1)
and (3), respectively, we formulate the model-based real-time
ED for a time k as follows:

max
P g[k],Pd,[k]

S (P g[k], P d[k]) (5a)

s.t.

1GP
g[k]− 1DP

d[k]− 1LP
`[k] = 0↔ λ[k] (5b)

P g ≤ P g[k] ≤ P̄ g (5c)

P d ≤ P d[k] ≤ P̄ d (5d)

P f ≤ ΨP [k] ≤ P̄ f ↔ µf [k], µ̄f [k], (5e)

where λr[k] and µf [k], µ̄f [k] are the dual variables of their
respective constraints, also referred to as “shadow prices” due
to their well-known economic interpretation [15]. The shadow
price of the system-wide power balance constraint, λr[k], is
often referred to as the system reference or energy price.

The main outcomes of the real-time ED are i) the optimal
generator and load dispatch instructions, which are a direct
result of the solution to (5), and ii) the LMPs, which are not a
direct result of the solution to (5), but may be calculated from
the ISFs, the loss sensitivity vector, and the shadow prices
[16].

Let ζ be the N -dimensional column vector of the system-
wide loss sensitivity to nodal injections, assuming injections
are balanced by the slack bus. Then, the LMPs are as follows,

λ[k] = λr[k]1T
N + ΨT (µ̄f [k]− µf [k]) + ζλr[k],

where 1N is an all-ones N -dimensional row vector. Note that
for clarity of presentation in (5), we have left out of the
real-time ED the security, reserve requirement, and ramping
constraints that would be present in a practical real-time
ED [4]. The exclusion of these constraints, however, has no
bearing on the formulation of the measurement-based real-
time ED and the constraints may easily be included in our
measurement-based approach.

B. Measurement-Based ISFs

In this section, we review the measurement-based ISF
estimation approach developed in [9], which we will employ
later in the formulation of the measurement-based real-time
ED. Consider the same power system defined in Section II-A.
Suppose the net real power injected into the system at bus i at
time t, Pi(t), varies by a small amount ∆Pi(t) from time t to
time t+ ∆t, where ∆t > 0 and small. Further, let ∆P i

n-m(t)
be the change in real power flow on line `l = (n,m) due
to ∆Pi. Define the measurement-based ISF for line `l with

respect to an injection at bus i as

Γi
n-m :=

∆P i
n-m

∆Pi
. (6)

While ∆P i
n-m(t) is not directly available through PMU mea-

surements, we can, however, measure ∆Pn-m(t), the total
change in flow on line `l due to bus injections at time t.
We observe that the variation in the flow on line `l is due
to variations in the injections at each bus i:

∆Pn-m = ∆P 1
n-m(t) + · · ·+ ∆PN

n-m(t). (7)

Employing (6) in (7) we obtain

∆Pn-m ≈ ∆P1(t)Γ1
n-m + · · ·+ ∆PN (t)ΓN

n-m.

Now suppose we have M + 1 sets of synchronized measure-
ments. Let

∆Pi[j] = ∆Pi[(j + 1)∆t]−∆Pi[j∆t],

∆Pn-m[j] = ∆Pn-m[(j + 1)∆t]−∆Pn-m[j∆t]

for j = 1, . . . ,M and define

∆Pi = [∆Pi[1] · · · ∆Pi[j] · · · ∆Pi[M ]]
T
,

∆Pn-m = [∆Pn-m[1] · · · ∆Pn-m[j] · · · ∆Pn-m[M ]]
T
.

Let Γn-m = [Γ1
n-m, . . . ,Γ

i
n-m, . . . ,Γ

N
n-m]. Then, clearly,

∆Pn-m = [∆P1 · · · ∆Pi · · · ∆PN ] ΓT
n-m (8)

Let ∆P denote the M ×N matrix [∆P1 · · · ∆Pi · · · ∆PN ].
Then, the system in (8) becomes

∆Pn-m = ∆PΓT
n-m. (9)

If M ≥ N , then (9) is an overdetermined system. Moreover,
assuming the ISFs are approximately constant over the M +1
measurements, we can obtain an estimate of Γn-m from least-
squares error estimation (see, e.g., [9]) as

Γ̂T
n-m = (∆PT ∆P )−1∆PT ∆Pn-m. (10)

In the next section, we discuss the application of the
measurement-based ISFs in the context of the real-time ED.

III. MEASUREMENT-BASED REAL-TIME ED

It is clear from (5) that the dispatch targets and LMPs
calculated from the results of the model-based real-time ED
depend the model-based ISFs and how accurately these ISFs
reflect the conditions in the system at the time the real-time
ED is formulated. However, due to potential inaccuracies in
telemetry and state estimation that propagate to the underlying
system model, the model-based ISFs may not always reflect
the real-time system conditions resulting in reliability and eco-
nomic issues. We address this shortcoming of the model-based
ED via the measurement-based ISFs described in Section II-B.

Let Γ̂ be the L × N matrix of the measurement-based
ISF estimates, each row of which is obtained from (10). As
described in Section II-A, model-based ISFs form the basis of
the network description in the real-time ED. To remove the



dependence of (5) on a power system model, we deploy Γ̂ to
re-formulate the network constraints (5e) as

P f ≤ Γ̂P [k] ≤ P̄ f . (11)

With the reformulated network constraints in (11), the real-
time ED no longer relies on a system model. Instead, the
system operator continuously updates the estimate of Γ̂ via
(10) as new PMU measurements become available and uses
the most up-to-date estimate to formulate the real-time ED.
This measurement-based real-time ED is adaptive to changing
system conditions, such as detected or undetected topology
changes, variations in bus injections, and even changes in line
and other system parameters due to loading or extreme tem-
perature conditions. The measurement-based ISFs can also be
used to formulate other sensitivities, such as the power transfer
distribution factors and line outage distribution factors [13],
which could then be used to formulate security constraints in
the real-time ED.

A key strength of our measurement-based ED approach
is its consistency with the current real-time ED framework;
the structure of the real-time ED formulation is left largely
unchanged, but more appropriate data is used as the basis for
that structure. The result is an enhanced and adaptive real-time
ED.

IV. CASE STUDIES

In this section, we illustrate two strengths of the
measurement-based real-time ED by using the Western Elec-
tricity Coordinating Council (WECC) 3-generator, 9-bus test
system. The real power flow limit on line (5, 6) has been
reduced to 20 MW so as to introduce transmission congestion.
In each study, we use simulated PMU measurements of the
random fluctuations in bus injections to estimate Γ̂, which are
generated according to

Pi[j] = P 0
i [j] + σν,

where P 0
i [j] is the nominal bus injection and σν is a pseu-

dorandom value drawn from a normal distribution with zero
mean and standard deviation σ. Furthermore, we assume each
load has an infinite willingness to pay, i.e., demand is inelastic,
and each generator i submits a quadratic offer function of the
form ai(P

g
i )2 + biP

g
i + ci and report the parameters of the

functions used in the studies in Table I.

TABLE I: Generator Offer Function Parameters

generator ai ($/MWh2) bi ($/MWh) ci ($)
1 0.1100 5.0 150
2 0.0850 1.2 600
3 0.1225 1.0 335

A. Undetected Line Outage

In this study, we assume there is an undetected outage of
line (6, 7) and compare the LMPs that would be realized
in the real-time ED with a model-based approach vs our
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Fig. 1: Pre- and post-outage LMPs and measurement-based
LMP evolution at buses 3 and 7 with line (6, 7) outaged.
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Fig. 2: “good” and ‘’bad” data LMPs and measurement-based
LMP evolution at buses 3 and 7.

measurement-based approach. For bus 3 (a generator bus) and
bus 7 (a load bus), Fig. 1 shows: i) the pre-outage model-
based LMPs, which are the LMPs that would be realized in the
presence of the undetected outage; ii) the post-outage model-
based LMPs, which are the LMPs that would be realized if the
outage was detected; and iii) the measurement-based estimates
of the LMPs. Unsurprisingly, there is a large discrepancy be-
tween the pre- and post-outage model-based LMPs, more than
$10/MWh at bus 7, which might raise market fairness issues of
such a situation were to arise. The measurement-based LMPs,
however, closely track the ‘true’ LMPs regardless of whether
or not the outage is detected. This example illustrates how
a measurement-based real-time ED formulation can enhance
the ability of the real-time ED to provide LMPs that capture
real-time system conditions.



B. Inaccurate System Model Data

We now demonstrate the robustness of our measurement-
based real-time ED approach against erroneous model data.
To simulate the impact of “bad” system model data on the
LMPs calculated with the real-time ED results, we increase the
impedance of line (8, 9) by 20%, leaving all other system data
unchanged. Figure 2 shows for buses 3 and 7: i) the model-
based LMPs with the “good” line (8, 9) impedance data; ii)
the model-based LMPs with the “bad” line (8, 9) impedance
data; and iii) the measurement-based estimates of the LMPs.
In this case, the bad line data causes the model-based LMPs
at buses 3 and 7 to appear less than their true values, sending
an incorrect price signal to resources at these buses. However,
our measurement-based approach is able to capture the true
LMP values due to its independence from the system model
data. Thus, the measurement-based LMPs send price signals
to the resources at buses 3 and 7 that accurately reflect the true
values of the system parameters, which dictate actual system
performance.

V. CONCLUDING REMARKS

In this paper, we developed a measurement-based approach
to the real-time ED. Our approach harnesses sensitivities
estimated from PMU measurements to reformulate the model-
based power flow and network flow constraints of the existing
model-based real-time ED. As shown in our case studies,
the measurement-based real-time ED is robust to undetected
system disturbances and inaccurate model data and results in
LMPs that more accurately reflect real-time system conditions.

Our future work will focus on the evaluation of the com-
parative performance of the measurement-based vs model-
based real-time ED in interconnected systems with little or
no information exchange. Furthermore, we will expand the
formulation of the measurement-based real-time ED presented
in this work to include security-based constraints and demon-
strate its effectiveness on large-scale systems.
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