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Abstract—The Power System Toolbox (PST) is a MATLAB-
based package for simulating power system electromechanical
dynamics. In this paper, we report on code that we developed
to augment the capabilities of the PST, which enables the
possibility of including the automatic generation control (AGC)
system in simulations. In the process, we have also modified the
linearization capability of the PST so as to include the effect of
the AGC system when enabled in the simulation. The augmented
PST package can be easily utilized for simulation studies in
different applications. As an example, we focus on its utilization
for assessing the impact of cyber events on power system dynamic
performance. Specifically, by using the augmented PST package,
users can inject various measurement errors and communication
delays to signals that are used by the AGC system, and simulate
the effect of such cyber events on system dynamic performance.
We present several case studies to illustrate the new features
added to the PST.

I. INTRODUCTION

The motivation for this work lies in the necessity for re-
examining the ability of current automatic generation control
(AGC) systems to handle increased variability from, e.g.,
renewable-based generation, and cyber events. The main func-
tion of an AGC system is to maintain frequency at a nominal
value and the inter-area power transfers at their scheduled
values.

Traditionally, it has been assumed that the time scales
on which the AGC operates are longer than those of other
power system components, e.g., exciters, and governors. Thus,
AGC is usually not included in conventional electromechanical
dynamics simulation packages. Also for the studies in which
it is necessary to include the effect of the AGC, the response
of other system components is assumed to settle down fast
enough so as to model the components as a set of algebraic
equations rather than as a set of differential equations [1]; how-
ever, this assumption is not accurate due to the large inertia of
conventional generators in a power system. Moreover, various
emerging technologies that are being integrated in the power
grid may challenge the operation and performance of current
AGC system designs. For instance, the deep penetration of
renewable-based generation introduces high variability into
the system, which may result in current AGC systems to
fail to meet performance requirements. In addition, new types
of resources in ancillary service markets (e.g., batteries, and
thermostatically-controlled load participating as demand re-
sponse resources), which although can alleviate the variability

and intermittence of renewable-based generation resources,
also bring up new questions about the suitability of current
AGC system designs. For instance, the AGC command signals
to battery-type participants must be properly designed to be
energy-neutral (i.e., the mean of the power regulation signals
is zero over a certain period). Also the fast response ability
of these resources allows the AGC system to send command
signals to these resources more frequently, so as to improve the
system performance. Thus, for both analyzing power system
dynamic performance, and designing new AGC algorithms, it
is necessary to include a model of the AGC in power system
electromechanical simulation packages.

Although there are a few customized software tools to sim-
ulate power system electromechanical dynamics that include
a model of the AGC system per the request of customers [2],
most commercial power system simulation tools do not. For
instance, although PowerWorld is able to set generators to
participate in AGC in steady-state simulation, a model of
the AGC system is not included in its dynamics simulation
capability. Neither is PSS®E capable of including the AGC
model in electromechanical dynamic simulations. In order to
achieve so, specific modules have to be written by users [2].

In this paper, we augment the Power System Toolbox
(PST) [3], a MATLAB-based toolbox for simulating power
system electromechanical dynamics. The capabilities of the
augmented PST package include the following: (i) the dy-
namics of a power system with AGC can be simulated by
a comprehensive nonlinear model including AGC dynamics,
turbine-governor control, excitor control, generator dynamics,
etc; and (ii) the linearized model corresponding to the aug-
mented dynamic systems can also be obtained so that, e.g.,
small-signal stability analysis can be easily conducted. Major
advantages of this open-source MATLAB-based package in-
clude the full access to system state variables and the ease of
implementing different AGC schemes.

As an application example, and since cyber-physical secu-
rity has been identified as the one of the priority areas in next
generation power systems [4], we use the augmented PST
package to study the impact of cyber events on the system
performance. As a centralized control system, the measure-
ments and commands used in AGC have to be transmitted
between the control center and generators over a communica-
tion network. Thus, the AGC system will be inevitably affected
by cyber events, such as network traffic or cyber attacks. In



this regard, in order to control the AGC-enabled PST package
when conducting such cyber security studies, we developed
a graphical user interface (GUI). This GUI allows users to
easily impose different kinds of measurement noise/errors and
communication delays to signals used by the AGC system,
and simulate the impact on power system dynamics.

II. POWER SYSTEM DYNAMICS WITH AGC

In this section, we present the mathematical models that
PST uses to simulate power system electromachanical dy-
namics, along with the AGC system model that we use to
augment the current PST capabilities. The resulting model is
described by a set of differential-algebraic equations (DAEs).
We also present a linearized model of the aforementioned
system, which can be used for small-signal analysis purposes.

A. Nonlinear Model

1) Electromechanical dynamics: In the original PST, there
are various models to describe the dynamics of power system
components (including different synchronous generator mod-
els, excitation system models, power system stabilizer models,
turbine-governor models, and load modulation models). The
details of such models can be found in [5]; in the remainder,
we just provide a compact model of the power system elec-
tromechanical dynamics that results from interconnecting such
individual component models.

Let 2(t) denote a vector including the dynamic state vari-
ables of all the aforementioned component models at time ¢,
e.g., the angles and speeds of all the synchronous generators.
Let y(t) denote the vector of system algebraic state variables
at time ¢, which includes bus voltage magnitudes and angles.
Let p(t) denote the vector of active power loads at different
buses at time . Then, the system electromechanical dynamics
can be described by a set of DAEs of the form

= f(z,y,u),
0=g(z,y,p), (1)

with functions f and g representing, respectively, the evolution
of the dynamic states and the algebraic constraints that arise
from the physics of the system (i.e., the power flow equations);
and u(t) denoting a vector containing the governor set points
that are determined by the AGC system at time ¢, as described
next.

2) AGC system dynamics: The AGC system calculates the
values of governor set points to offset the generation and
demand mismatch, so as to regulate the system frequency to its
nominal value. In addition, for a power system with multiple
balancing authority (BA) areas that are connected through tie
lines, the AGC attempts to maintain the inter-area power flows
at their scheduled values. Let A denote the set of all BA areas
in the interconnected power system. These AGC objectives are
achieved by driving to zero the so-called area control error
(ACE) of each BA area m € A, which is defined as follows:

ACEm: Z (Pmn_Psﬁfyib)"i_bm(fm_fnom% (2)
neAn,

where b,,, is the bias factor, and A,, denotes the set of BA
areas that are connected to area m through tie lines. The
variable P,,,(t) denotes the actual power interchange from
area m to its neighboring area n at time ¢, while P3°(t)
denotes the corresponding scheduled value. The variable f,, ()
is the actual system frequency at time ¢, while f,,,, is the
nominal system frequency.

In order to augment PST to enable simulations that include
AGC, we adopt the AGC control logic described in [1], the
dynamics of which we describe next. Let z,,(t), m € A,
denote a variable representing the sum of set point values of
generators participating in AGC in area m at time ¢. Then, the
evolution of z,(t) is described by

im = —2zm — ACEp, + Y Ps, 3)
i€Gm

where G, is the set of generators in area m that participate
in AGC, and Ps,(t) is the power output of generator ¢ in
G, at time t. For each generator i € G,,, the set point
at time ¢, denoted by Pg,(t), is proportional to z,,(t), i.e.,
P, (t) = Km,2zm(t), where the participation factors r,,,’s
satisfy ) ;.5 #m, = 1. Then, the set points form the
vector u(t) in (1), ie., u(t) = {Pc;(t)}icg,,. By defining
z(t) = {zm(t) }me.a, we can compactly write the AGC system
dynamics as follows:

z= hl(xa yvz)a
u = ha(2). @)
B. Linearized Model

Assume that (1) and (4) evolve towards an equilibrium point
(x*,y*, 2%, u") under a constant load profile p*. With a change
in load profile, Ap(t) = p(t) — p*, the system state trajectory
becomes x(t) = z* + Ax(t), y(t) = y* + Ay(t) z(t) =
2* + Az(t), and u(t) = u* + Au(t). For sufficiently small
Ap(t), by linearizing (1) and (4) around (z*,y*, z*,u*), we
obtain a linearized model described by a set of linear DAEs
of the form

Az = A1 Ax + As Ay + B1Au, 5)

0= AzAx + AyAy + C1Ap, (6)
AZ = AsAx + AgAy + BaAz, 7
Au = B3Az, 8)

where the matrices A, — Ag, B1 — B3 and C; are obtained
by evaluating the partial derivatives of the functions f, g, h1,
and ho for (x*,y*, 2%, u").

Assume that the invertability of matrix A4 always holds,
then by plugging Ay and Aw into (5) and (6), we have that

Ai = AL Az + BIAz + CL Ap,
Az = ALAz 4+ BLAz + CLAD, ©)
where
Al = A1 = A Ay As, BY = BiBy, Cf = —AsA;'C,
Al = A5 — AgA' A3, By =By, Ch = —AA7'Cy.



We claim that the linear model in (5)-(9) is useful for small
signal stability evaluation and analysis, although there are two
issues that need to be considered. First, for certain operating
points, if constraints or hard limits of the states of some
electric components (e.g., exciters, and governors) are hit;
then (1) and (4) are not differentiable. However, this has been
addressed in the PST by numerically calculating the Jacobian
matrix by applying a small perturbation to each state vari-
able, rather than analytically differentiating the corresponding
functions. Second, the AGC is implemented in a discrete-
time fashion with a relatively large time step by appropriately
discretizing the continuous-time representation in (4), rather
than in a continuous way as presented above. However, we
will show in Section V that although large AGC time steps
will slow the process, the system stability characteristics are
preserved.

III. IMPLEMENTATION OF THE AGC SYSTEM MODEL

In this section, we present a procedure for implementing a
model for the AGC model described in Section II-A in the
PST, as well as a procedure for obtaining the matrices of the
corresponding linear model, as defined in (9).

A. AGC System Model Implementation

The PST includes a function called "mtg_sig" to modulate
the governor set point values during simulation. The modula-
tion signals are defined in a matrix called "tg_sig" and passed
as a global variable. In terms of implementation, it is worth
noting that according to the PST setup, the modulation signals
are not exactly the governor set-point values, but the difference
between the set-point values determined by the AGC and the
scheduled generation values determined, e.g., by economic
dispatch. Therefore, without AGC, "tg_sig" is set to zero by
default.

To implement the model of the AGC system in Section
II-A, we modified the function "mtg_sig" enabling it to take
measurements of system frequency and the power flow on tie
lines, and to perform the calculations described in (2) and (3).
Then, the set points for participating generators are calculated
based on their participation factors. After subtracting the
scheduled generation values, the set points are assigned to the
modulation signal "tg_sig". Note that we use the average of the
generators’ speeds as an approximation of the actual system
frequency. Also, note that since the power bases for the system
and generators are different, the set point values have to be
properly scaled in order to get the correct values to be passed
to the generator governors. Finally, we comment on the time
step of the AGC system. Typically, the AGC signals are sent
out to the generators every 2 to 4 seconds. Therefore, we set
the AGC time step as a parameter in our toolbox, which the
user can define in the case files. Then, the value of "tg_sig" is
recalculated according to this AGC time step parameter (e.g.,
every 2 seconds) rather than the system simulation time step.
The value of "tg_sig" is kept constant in between times.

B. Linearized Model

The PST possesses a linearization capability that provides
a linear dynamic model of the form:

Ai = APST Az + BPST Au+ CFPST Ap,

Av = DPST Az + DT Au+ DESTAp,  (10)

where Aw(t) denotes the variation on the measurement vari-
ables used in AGC at time ¢, i.e., the generator output and
the power flow on the tie lines between areas. The superscript
PST indicates that these matrices can be obtained by exe-
cuting the original PST code. The details regarding how to
calculate these matrices can be found in the description of the
driver function "svm_mgen" in [5]. Note that the sensitivity
matrix of the generator electrical output (in per unit) with
respect to system state is on each generator base; therefore, it
has to be scaled properly when used in the ACE calculation.

With AGC enabled, one way to obtain a linearized model
for the whole system is to fully modify the PST source code
to re-evaluate the Jacobian matrix of the nonlinear electrome-
chanical dynamic system model together with the AGC model;
instead, we implemented a method that makes use of (10). To
this end, we rewrite the AGC evolution equation (7) as

Az = A10A$+A11AU+BQAZ, (]])

where the entries of A19, A1; and Bs can be determined by
combining (2) and (3). Then, by combining (8), (10), and (11),
we obtain a linear dynamic model of the form in (9), where

All = A{DST’ Al2 = AlO + A11D1PST7
Bl = BPST s, Bl = A1, DPST By + B,
Ci = CFST, Cé = A11D§ST.

IV. GRAPHICAL USER INTERFACE AND APPLICATIONS IN
CYBER SECURITY

We also developed a graphical user interface (GUI) for users
to easily run simulations; the control panel of this GUI is
shown in Fig. 1. After the user selects the case file and checks
the AGC-ON box in the first row, the simulation results will be
displayed upon the user’s request (e.g., frequency, and voltage
magnitudes and angles at certain buses). The user can also
choose to execute a simulation using either one or both of
nonlinear and linearized models as discussed in Section II.

This GUI also provides an interface to directly compromise
the measurements used by the AGC system, and evaluate the
effects on power system dynamic performance. First, the user
can choose the measurement variable (among those that are
used by the AGC system) to be compromised. Let (¢) denote
the actual value of the selected variable at time ¢, and 7(¢)
denote the corresponding compromised value. The user can
introduce errors and delays to this measurement variable. Both
deterministic and random measurement errors can be added.

The error parameters, denoted as €, can be determined either
by adjusting the first slider (see Fig. 1), or by directly entering
the parameter value in the textbox under this slider. Then, for
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Figure 1: AGC simulation package interface.

the deterministic error case, the corresponding variable will be
shifted by e, i.e., 7#(t) = r(t) + € for the random error case,
the variable will be shifted by eN(t), i.e., 7(t) = r(t) +eN(¢),
where N (t) is a standard Gaussian white noise process.
Similarly, the communication delay, denoted as 7, can be
introduced through the second slider (see Fig. 1), or in the
textbox underneath. Then, the corresponding variable will be
delayed by time 7, (i.e., #(t) = r(t — 7)), and then used in
the calculation of (2).

V. CASE STUDIES

In this section, we demonstrate the capabilities of the
augmented PST using a 68-bus 16-machine system, which is a
reduced-order model of the New England/New York intercon-
nected system. Its one-line diagram and detailed description
can be found in [6]. The parameter values are defined in a data
file, which is part of the PST suite [5]. To implement AGC,
extra data fields to define the BA area topology, and AGC
parameters (e.g., bias factors, participation factors, scheduled
power interchange values) are added to the data file. In this
case, we assume that there are two BA areas, and the tie lines
are Line 1-2, 1-27, and 9-8, according to the one-line diagram
in [6]. The scheduled power interchange value is assumed to be
one determined by the initial steady-state conditions. Note that
in the first two simulations, we set the AGC time step equal to
the simulation time step in order to illustrate the accuracy of
the linearized model. However, we understand that this is not
practical; therefore, in the following studies, we investigate the
impact of relatively larger AGC time steps.
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Figure 2: System performance with and without AGC.

A. Nonlinear Model Validation

First, to showcase the new AGC simulation capability, we
arbitrarily increase the load at buses 4, 8, 37, 41, 42, and 52
by 0.1 p.u. Without the AGC system, the frequency deviation
at each generator is depicted in Fig. 2(a). For the case when
the AGC system is enabled in the simulation, the frequency
deviation at each generator is also depicted in Fig. 2(a). In
this case, we can observe that the AGC restores the system
frequency back to nominal frequency. The power interchange
values from one area to the other with and without AGC are
depicted in Fig. 2(b), where we can see that the AGC works as
expected by bringing the power exchange back to its scheduled
value.

B. Linearized Model Validation

With the same data set, we obtained the linearized model as
described in Section III-B. In order to verify its correctness,
we plot the approximate frequency deviation of each generator
using the linearized model in Fig. 2(a), and the approximate
power interchange in Fig. 2(b) respectively. As one can see,
the simulation results agree with the trajectories obtained using
the full nonlinear model.
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Figure 3: System performance with discrete AGC signal.

C. Impact of AGC time steps

Originally, we implemented the AGC system as described
in (4) with the AGC time step equal to the simulation time step
(i.e., 0.005 second), with the corresponding system response
as shown by the blue (solid) lines in Fig. 3(a). Here we change
the AGC time step to 2 seconds; the resulting frequency
deviation at each bus is plotted in Fig. 3(a) in red (dashed)
lines. Similarly, the sum of set points to all the governors with
continuous and discrete time intervals is displayed in Fig. 3(b)
by blue (solid) and red (dashed) lines respectively. From these
two figures, we can observe that convergence is preserved with
both time intervals, except that the system converges slower
with 2-second time step.

D. Cyber Security Studies

As an illustrative example, we investigate the impact of
measurement noise on the system performance. White noise
is added to the frequency measurement. The frequency tra-
jectories at bus 1 obtained using the nonlinear and linearized
models are plotted in Fig. 4. First, one can notice that both
trajectories are very close to each other, which validates the
linearization capability of the AGC-enabled PST. Moreover,
the results indicate that the AGC system is generally robust
to white noise. Further analysis on the impact of different
types of measurement errors and delays on the system dynamic
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Figure 4: System performance with measurement noise.

performance was investigated in [7], [8], where this toolbox
has been utilized extensively to comprehensively evaluate
the impact of compromised measurements due to malicious
attacks (e.g., measurement delays caused by Denial-of-Service
attacks and measurement errors caused by man-in-the-middle
attacks).

VI. CONCLUDING REMARKS

The AGC-enabled PST presented in this paper can simu-
late power system dynamics with a comprehensive nonlinear
model that includes the system network, generator dynamics,
excitation control, turbine-governor response, power system
stabilizer, along with AGC. This AGC-enabled PST also
provides a linearization capability that can be used for small-
signal stability analysis. These capabilities have been validated
with a two-area test case.

This toolbox can facilitate simulation studies in different
applications. As an example, we use this package to evaluate
the impact on system dynamic performance of cyber events.
To this end, we developed a GUI, which allows users to easily
inject errors and delays on the measurements used in AGC.
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