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Abstract

We discuss the utilization of distributed energy resources (DERs) to provide active and reactive power
support for ancillary services. Though the amount of active and/or reactive power provided individually
by each of these resources can be very small, their presence in large numbers in power distribution
networks implies that, under proper coordination mechanisms, they can collectively provide substantial
active and reactive power regulation capacity. In this article, we provide a simple formulation of the
DER coordination problem for enabling their utilization to provide ancillary services. We also provide
specific architectures and algorithmic solutions to solve the DER coordination problem, with focus on
decentralized solutions.
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1 Introduction

On the distribution side of a power system, there are many distributed energy resources (DERs), e.g.,
photovoltaic (PV) installations, plug-in hybrid electric vehicles (PHEVs) and thermostatically-controlled
loads (TCLs), that can be potentially used to provide ancillary services, e.g., reactive power support for
voltage control (see, e.g., [1] and the references therein), and active power up and down regulation for
frequency control (see, e.g., [2] and the references therein). To enable DERs to provide ancillary services, it
is necessary to develop appropriate control and coordination mechanisms. One potential solution relies on
a centralized control architecture in which each DER is directly coordinated by (and communicates with) a
central decision maker. An alternative approach is to distribute the decision making, which obviates the need
for a central decision maker to coordinate the DERs. In both cases, the decision making involves solving a
resource allocation problem for coordinating the DERs to collectively provide a certain amount of a resource
(e.g., active or reactive power).

In a practical setting, whether a centralized or a distributed architecture is adopted, the control of DERs
for ancillary services provision will involve some aggregating entity that will gather together and coordinate
a set of DERs, which will provide certain amount of active or reactive power in exchange for monetary
benefits. In general, these aggregating entities are the ones that interact with the ancillary services market,
and through some market-clearing mechanism they enter a contract to provide some amount of resource,
e.g., active and/or reactive power over a period of time. The goal of the aggregating entity is to provide
this amount of resource by properly coordinating and controlling the DERs, while ensuring that the total
monetary compensation to the DERs for providing the resource is below the monetary benefit that the
aggregating entity obtains by selling the resource in the ancillary services market.

In the context above, a household with a solar PV rooftop installation and a PHEV might choose to offer
the PV installation to a renewable aggregator so it is utilized to provide reactive power support (this can be
achieved as long as the PV installation power electronics-based grid interface has the correct topology [3]).
Additionally, the household could offer its PHEV to a battery vehicle aggregator to be used as a controllable
load for energy peak shaving during peak hours and load-leveling at night [4]. Finally, the household might
choose to enroll in a demand response program in which it allows a demand response provider to control its
TCLs to provide frequency regulation services [2]. In general, the renewable aggregator, the battery vehicle
aggregator, and the demand response provider can be either separate entities or they can be the same entity.
In this article, we will refer to these aggregating entities as aggregators.
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2 The Problem of DER Coordination

Without loss of generality, denote by xj the amount of resource provided by DER i without specifying
whether it is active or reactive power. [However it is understood that each DER provides (or consumes) the
same type of resource, i.e., all the xi’s are either active or reactive power.] Let 0 < xi < xi, for i = 1, 2, . . . , n,
denote the minimum (xi) and maximum (xi) capacity limits on the amount of resource xi that node i can
provide. Denote by X the total amount of resource that the DERs must collectively provide to satisfy the
aggregator request. Let πi(xi) denote the price that the aggregator pays DER i per unit of resource xi that
it provides. Then, the objective of the aggregator in the DER coordination problem is to minimize the total
monetary amount to be paid to the DERs for providing the total amount of resource X while satisfying the
individual capacity constraints of the DERs. Thus, the DER coordination problem can be formulated as
follows:

minimize

n∑
i=1

xiπi(xi)

subject to

n∑
i=1

xi = X

0 < xi ≤ xi ≤ xi, ∀j.

(1)

By allowing heterogeneity in the price per unit of resource that the aggregator offers to each DER we
can take into account the fact that the aggregator might value classes of DERs differently. For example,
the down regulation capacity provided by a residential PV installation (which is achieved by curtailing its
power) might be valued differently from the down regulation capacity provided by a TCL or a PHEV (both
would need to absorb additional power in order to provide down regulation).

It is not difficult to see that if the price functions πi(·), i = 1, 2 . . . , n, are convex and non-decreasing,
then the cost function

∑n
i=1 xiπi(xi) is convex; thus, if the problem in (1) is feasible, then there exists a

globally optimal solution. Additionally, if the price per unit of resource is linear with the amount of resource,
i.e., πi(xi) = cixi, i = 1, 2, . . . , n, then, xiπi(xi) = cix

2
i , i = 1, 2, . . . , n, and the problem in (1) reduces to

a quadratic program. Also, if the price per unit of resource is constant, i.e., πi(xi) = ci, i = 1, 2, . . . , n,
then, xiπi(xi) = cixi, i = 1, 2, . . . , n, and the problem in (1) reduces to a linear program. Finally, if
πi(xi) = π(xi) = c, i = 1, 2, . . . , n, for some constant c > 0, i.e., the price offered by the aggregator is
constant and the same for all DERs, then, the optimization problem in (1) becomes a feasibility problem of
the form

find x1, x2, . . . , xn

subject to

n∑
i=1

xi = X

0 < xi ≤ xi ≤ xi, ∀j.

(2)

If the problem in (2) is indeed feasible (i.e.,
∑n

l=1 xl ≤ X ≤
∑n

l=1 xl ), then there is an infinite number of
solutions. One such solution, which we refer to as fair-splitting, is given by

xi = xi +
X −

∑n
l=1 xl∑n

l=1(xl − xl)
(xi − xi), ∀i. (3)

The formulation to the DER coordination problem provided in (2) is not the only possible one. In this
regard, and in the context of PHEVs, several recent works have proposed game-theoretic formulations to the
problem [5, 6, 7]. For example, in [7], the authors assume that each PHEV is a decision maker and can freely
choose to participate after receiving a request from the aggregator. The decision that each PHEV is faced
with depends on its own utility function, along with some pricing strategy designed by the aggregator. The
PHEVs are assumed to be price anticipating in the sense that they are aware of the fact that the pricing is
designed by the aggregator with respect to the average energy available. Another alternative is to formulate
the DER coordination problem as a scheduling problem [8, 9], where the DERs are treated as tasks. Then,
the problem is to develop real-time scheduling policies to service these tasks.
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Figure 1: Control architecture alternatives.

3 Architectures

Next, we describe two possible architectures that can be utilized to implement the proper algorithms for solv-
ing the DER coordination problem as formulated in (1). Specifically, we describe a centralized architecture
that requires the aggregator to communicate bi-directionally with each DER, and a distributed architecture
that requires the aggregator to only unidirectionally communicate with a limited number of DERs, but re-
quires some additional exchange of information (not necessarily through bidirectional communication links)
among the DERs.

3.1 Centralized Architecture

A solution can be achieved through the completely centralized architecture of Fig. 1(a), where the aggregator
can exchange information with each available DER. In this scenario, each DER can inform the aggregator
about its active and/or reactive capacity limits and other operational constraints, e.g., maintenance schedule.
After gathering all this information, the aggregator solves the optimization program in (1), the solution of
which will determine how to allocate among the resources the total amount of active power P r

s , and/or
reactive power Qr

s that it needs to provide. Then, the aggregator sends individual commands to each DER
so they modify their active and or reactive power generation according to the solution of (1) computed by
the aggregator. In this centralized solution however, it is necessary to overlay a communication network
connecting the aggregator with each resource, and to maintain knowledge of the resources that are available
at any given time.

3.2 Decentralized Architecture

An alternative is to use the decentralized control architecture of Fig. 1(b), where the aggregator relays in-
formation to a limited number of DERs that it can directly communicate with each DER being able to
exchange information with a number of other close-by DERs. For example, the aggregator might broadcast
the prices to be paid to each type of DER. Then, through some distributed protocol that adheres to some
communication network interconnecting the DERs, the information relayed by the aggregator to this lim-
ited number of DERs is disseminated to all other available DERs. This dissemination process may rely on
flooding algorithms, message-passing protocols, or linear-iterative algorithms as proposed in [10, 11]. After
the dissemination process is complete and through a distributed computation over the communication net-
work, the DERs can solve the optimization program in (1) and determine its active and/or reactive power
contribution.

A decentralized architecture like the one in Fig. 1(b) may offer several advantages over the centralized one
in Fig. 1(b), including the following. First, a decentralized architecture may be more economical because
it does not require communication between the aggregator and the various DERs. Also, a decentralized
architecture does not require the aggregator to have a complete knowledge of the DERs available. Addition-
ally, a decentralized architecture can be more resilient to faults and/or unpredictable behavioral patterns by
the DERs. Finally, the practical implementation of such decentralized architecture can rely on inexpensive
and simple hardware. For example, the testbed described in [12], which is used to solve a particular in-
stance of the problem in (1), uses Arduino microcontrollers (see [13] for a description) outfitted with wireless
transceivers implementing a ZigBee protocol (see [14] for a description).
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4 Algorithms

Ultimately, whether a centralized or a decentralized architecture is adopted, it is necessary to solve the
optimization problem in (1). If a centralized architecture is adopted, then solving (1) is relatively straight-
forward using, e.g., standard gradient-descent algorithms (see, e.g., [15]). Beyond the DER coordination
problem and the specific formulation in (1), solving an optimization problem is challenging if a decentralized
architecture is adopted (especially if the communication links between DERs are not bi-directional); this has
spurred significant research in the last few years (see, e.g., [15, 16, 17, 18, 19] and the references therein).

In the specific context of the DER coordination problem as formulated in (1), when the cost functions are
assumed to be quadratic and the communication between DERs is not bi-directional, an algorithm amenable
for implementation in a decentralized architecture like the one in Fig 1(b) has been proposed in [12]. Also,
in the context of Fig 1(b), when the communication between DERs are bi-directional, the DER coordination
problem, as formulated in (1), can be solved using an algorithm proposed in [20].

As mentioned earlier, when the price offered by the aggregator is constant and identical for all DERs,
the problem in (1) reduces to the feasibility problem in (2). One possible solution to this feasibility problem
is the fair splitting solution in (3). Next, we describe a linear-iterative algorithm—originally proposed in
[10, 11] and referred to as ratio consensus—that allows the DERs to individual determine its contribution
so that the fair splitting solution is achieved.

4.1 Ratio Consensus: A Distributed Algorithm for Fair Splitting

We assume that each DER is equipped with a processor that can perform simple computations, and can
exchange information with neighboring DERs. In particular, the information exchange between DERs can
be described by a directed graph G = {V, E}, where V = {1, 2, . . . , n} is the vertex set (each vertex—or
node—corresponds to a DER), and E ⊆ V × V is the set of edges, where (i, j) ∈ E if node i can receive
information from node j. Let L+ ⊆ V, L+ 6= ∅ denote the set of nodes that the aggregator is able to
communicate with. We require G to be strongly connected, i.e., for any pair of vertices l and l′, there exists
a path that starts in l and ends in l′.

The processor of each DER i maintains two values yi and zi, which we refer to as internal states, and
updates them (independently of each other) to be, respectively, a linear combination of DER i’s own previous
internal states, and the previous internal states of all nodes that can possibly transmit information to node
i (including itself). In particular, for all k ≥ 0, each node i updates its two internal states as follows:

yi[k + 1] =
∑

j∈N−
i

1

D+
j

yj [k], (4)

zi[k + 1] =
∑

j∈N−
i

1

D+
j

zj [k], (5)

where N−i = {j ∈ V : (i, j) ∈ E}, i.e., all nodes that can possibly transmit information to node i (including
itself); and D+

i is the out-degree of node i, i.e., the number of nodes to which node i can possibly transmit
information (including itself). Then, if the initial conditions in (4) are set to yi[0] = X/m − xi if i ∈ L+,
and yi[0] = −xi otherwise; and the initial conditions in (5) are set to zi[0] = xi−xi. Then, as shown in [11],
as long as

∑n
l=1 xl ≤ X ≤

∑n
l=1 xl, each DER i can asymptotically calculate its contribution as

xi = xi + γ(xi − xi) (6)

where

γ = lim
k→∞

γi[k] = lim
k→∞

yi[k]

zi[k]
=

X −
∑n

l=1 xl∑n
l=1(xl − xl)

. (7)

It is important to note that the algorithm in (4)–(7) also serves as a primitive for the algorithm proposed
in [12], which solves the problem in (1) when the cost function is quadratic. Also, the algorithm in (4)–(7) is
not resilient to packet-dropping communication links or imperfect synchronization among the DERs, which
makes it difficult to implement in practice; however, there are robustified variants of this algorithm that
address these issues [21], and have been demonstrated to work in practice [12].
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