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Abstract—In this paper, we propose a measurement-based
method to compute the power flow Jacobian matrix, from which
we can infer pertinent information about the system topology in
near real-time. A salient feature of our approach is that it readily
adapts to changes in system operating point and topology; this
is desirable as it provides power system operators with a way to
update, as the system evolves, the models used in many reliability
analysis tools. The method uses high-speed synchronized voltage
and current phasor data collected from phasor measurement
units to estimate entries of the Jacobian matrix through linear
total least-squares (TLS) estimation. In addition to centralized
TLS-based algorithms, we provide distributed alternatives aimed
at reducing computational burden. Through numerical case
studies, we illustrate the effectiveness of our proposed Jacobian-
matrix estimation approach as compared to the conventional
model-based one.

Index Terms—Power flow Jacobian matrix, real-time monitor-
ing, phasor measurement units, sensitivity.

I. INTRODUCTION

Power flow analysis is an important tool for power system

planning and operations. For example, it enables operators to

assess whether or not, under quasi steady-state conditions, a

power system satisfies certain basic operational requirements,

e.g., bus voltage magnitudes remain close to rated values, and

transmission lines are not overloaded [1]. The power flow

problem is often solved via the iterative Newton-Raphson

algorithm, which simultaneously solves a set of nonlinear

equations with an equal number of unknowns [1]. At each

iteration, the algorithm considers a linearized problem con-

structed from the power flow Jacobian matrix, which is a

sparse matrix that results from a sensitivity analysis of the

power flow equations. Also, in real-time contingency analysis

(RTCA), by solving the power flow equations repeatedly for all

credible contingency scenarios, operators determine whether

or not the system will meet operational reliability requirements

in case of outage in any one particular asset (e.g., a generator
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or a transmission line), a condition known as N-1 security.

In addition to its direct use in the numerical solution to the

power flow problem, the eigenvalues of the Jacobian matrix

have long been used as indices of system vulnerability to

voltage instabilities [2]. Also, since the sparsity structure of

the Jacobian matrix is closely related to the graph Laplacian

of the underlying network, the structure of the estimated Jaco-

bian matrix inherently contains the most up-to-date network

topology and corresponding parameters; thus, it is useful in

other online analysis tools, such as state estimation.

In order to monitor and maintain operational reliability us-

ing the analysis tools described above, power system operators

must rely on an accurate power flow Jacobian matrix, which

may be out-of-date due to erroneous records, faulty telemetry

from remotely monitored circuit breakers, or unexpected op-

erating conditions resulting from, e.g., unforeseen equipment

failure. Therefore, in this paper, we propose a method for

online estimation of the power flow Jacobian matrix using

only measurements obtained from phasor measurement units

(PMUs), which measure voltages, currents, and frequency at

a very high speed (usually 30 measurements per second) [3].

Our approach to online Jacobian matrix estimation builds

upon our previous work in [4], [5]. In [4], by relying on

active power bus injection and line flow data obtained from

PMUs, linear sensitivity distribution factors are computed via

the solution of a linear least-squares errors (LSE) estimation

problem. In this paper, by exploiting slight fluctuations in

measurements of bus voltage magnitudes and phase angles,

as well as those of net active and reactive power injections

obtained from PMUs, we construct an overdetermined set of

linear equations, and solve it via total least-squares (TLS)

estimation; the solution to the problem provides the entries

of the Jacobian matrix. In this regard, in [4], even though the

regressor matrix is constructed from PMU measurements, it is

assumed to be error-free as per the LSE estimation framework.

In contrast, the TLS-based estimation method proposed in

this paper to compute the Jacobian matrix accounts for errors

present in both the regressor matrix and the observation vector.

Furthermore, we improve the adaptability of the proposed

method by formulating a weighted TLS (WTLS) problem,

in which recent measurements are weighted more favorably

than past ones. We illustrate the effectiveness of the proposed

measurement-based Jacobian estimation method by comparing

its results to benchmark values obtained via direct linearization

of the power flow equations at a particular operating point. The

estimated Jacobian matrix is quite accurate and can therefore

be used in studies that rely on the power flow model.
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Another advantage of our proposed approach is that an up-

to-date estimate of the Jacobian matrix can be used to infer

the current network topology and pertinent parameter values.

Topology errors have long been cited as a cause of inaccurate

state estimation results [6]. Since then, numerous approaches

have been proposed to detect and identify topology errors

in the context of state estimation [7]–[9]. The specific issue

of determining external system topology errors was explored

in [10]. In [11], the state estimation problem is reformulated

as a least absolute value optimization problem, in order to

determine whether a line exists between two buses. Owing to

the potential improvement in situational awareness held by the

widespread deployment of PMUs, recent work has focused on

external system line-outage detection and/or identification by

taking advantage of voltage phase angle measurements [12]–

[15]. Recently, in [16], synchrophasor data is used to identify

an equivalent power system network, which includes only

buses that are equipped with phasor measurement capabilities,

while employing the so-called DC power flow approximations.

While the methods proposed in the aforementioned works may

provide updated network connectivity information, they do not

offer further insight with regard to associated parameters, e.g.,

transmission line conductance and admittance.

For the most part, we assume an offline model entirely

unavailable and that all buses within the monitored region are

equipped with PMUs. Admittedly, present-day power systems

are still far from having such a wide coverage of the network.

However, incentives to invest in measurement infrastructure

are driven by preliminary demonstrations of its potential ben-

efits in monitoring, protection, and control capabilities [17].

Moreover, today, in addition to standalone PMU installations,

synchronous phasor measurement capabilities are available

as standard features in many protective relays, meters, and

recorders [18]. Thus, we foresee that a sufficiently rich mea-

surement set will be available in the near future.

The remainder of this paper is organized as follows. Sec-

tion II describes the conventional model-based method to

obtain the power flow Jacobian matrix, and formulates the

proposed measurement-based method as the solution of a TLS

problem. In Section III, we describe algorithms to solve the

basic and weighted TLS problems and illustrate them via

examples. In Section IV, we refine the problem formulation so

as to enable a distributed implementation of the proposed TLS-

based Jacobian estimation approach. Case studies involving the

IEEE 118-bus test system are presented in Section V. Finally,

we provide concluding remarks in Section VI.

II. PRELIMINARIES

Let N denote the set of N buses in the system. Let Vi and

θi, respectively, denote the voltage magnitude and phase angle

at bus i; additionally, let Pi and Qi, respectively, denote the net

active and reactive power injections at bus i. The entries of the

power flow Jacobian matrix are composed of partial derivatives

of Pi with respect to θj and Vj , which we denote by Ψj
i and

Φj
i , respectively, and partial derivatives of Qi with respect

to θj and Vj , which we denote by Γj
i and Λj

i , respectively.

Suppose θj varies by a small amount, denoted by ∆θj . Also

denote by ∆P
θj
i the change in active power injection at bus

i, resulting from ∆θj , with all other system quantities held

constant. Then, it follows that

Ψj
i :=

∂Pi

∂θj
≈ ∆P

θj
i

∆θj
. (1)

On the other hand, suppose Vj varies by a small amount,

denoted by ∆Vj . Also denote by ∆P
Vj

i the change in active

power injection at bus i, resulting from ∆Vj , with all other

system quantities held constant. Then, it follows that

Φj
i :=

∂Pi

∂Vj

≈ ∆P
Vj

i

∆Vj

. (2)

Similarly, we define the analogue of (1)–(2) for reactive power

as follows:

Γj
i :=

∂Qi

∂θj
≈ ∆Q

θj
i

∆θj
, (3)

where ∆Q
θj
i denotes the change in reactive power injection

at bus i, resulting from ∆θj , with all other quantities held

constant; and

Λj
i :=

∂Qi

∂Vj

≈ ∆Q
Vj

i

∆Vj

, (4)

where ∆Q
Vj

i denotes the change in reactive power injection at

bus i, resulting from ∆Vj . Traditionally, the sensitivity factors

in (1)–(4) have been computed offline based on a model of the

power system, including its topology and pertinent parameters.

Next, we describe this traditional model-based approach.

A. Model-Based Approach to Jacobian Computation

Consider a power system with N buses, each of which is

categorized into one of the following: (i) slack bus, for which

the voltage magnitude is fixed and with respect to which the

phase angles of all other buses are measured, (ii) voltage-

controlled (PV) bus, for which the voltage magnitude is fixed,

or (iii) load (PQ) bus, for which neither voltage magnitude nor

phase angle are fixed (see, e.g., [1]). Let NL (NG) denote the

set of NL load (NG voltage-controlled) buses. Furthermore,

without loss of generality, in the remainder of this paper, we

assume that bus 1 is designated as the slack bus. Then, the

static behavior of the power system can be described by the

power flow equations:

Pi = pi(θ1, . . . , θN , V1, . . . , VN ), i ∈ NG ∪ NL, (5)

and

Qi = qi(θ1, . . . , θN , V1, . . . , VN ), i ∈ NL. (6)

In (5)–(6), the dependence on network parameters, such as line

and shunt impedances, is implicitly considered in pi(·) and

qi(·). Suppose a solution to (5)–(6) exists at (θ0i , V
0
i , P

0
i , Q

0
i ),

i = 1, . . . , N . Further, assume pi(·), for all i ∈ NG ∪ NL,

and qi(·), for all i ∈ NL, are continuously differentiable with

respect to θi and Vi, for all i = 1, . . . , N , at (θ0i , V
0
i , P

0
i , Q

0
i ),

i = 1, . . . , N . For each i, let θi = θ0i +∆θi, Vi = V 0
i +∆Vi,

Pi = P 0
i + ∆Pi, and Qi = Q0

i + ∆Qi. Then, assuming
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TABLE I: WECC 3-machine 9-bus systems—model- and measurement-based sensitivity factors obtained in Examples 1 and 2.

Ψ2
5 Ψ3

5 Ψ4
5 Ψ5

5 Ψ6
5 Ψ7

5 Ψ8
5 Ψ̂2

5 Ψ̂3
5 Ψ̂4

5 Ψ̂5
5 Ψ̂6

5 Ψ̂7
5 Ψ̂8

5

0 0 -10.86 0 16.54 0 0 0.07631 0.05691 -11.03 0.03587 16.64 -0.06743 -0.02094

Ψ9
5 Φ4

5 Φ5
5 Φ6

5 Φ7
5 Φ8

5 Φ9
5 Ψ̂9

5 Φ̂4
5 Φ̂5

5 Φ̂6
5 Φ̂7

5 Φ̂8
5 Φ̂9

5

-5.6816 -2.239 0 2.3762 0 0 -1.8495 -5.7703 -2.236 -0.02054 2.557 -0.08047 0.03681 -2.017

Γ2
5 Γ3

5 Γ4
5 Γ5

5 Γ6
5 Γ7

5 Γ8
5 Γ̂2

5 Γ̂3
5 Γ̂4

5 Γ̂5
5 Γ̂6

5 Γ̂7
5 Γ̂8

5

0 0 0 0 0 2.4279 -3.861 -0.05818 0.02315 -0.1354 0.02593 0.06445 2.519 -3.855

Γ9
5 Λ4

5 Λ5
5 Λ6

5 Λ7
5 Λ8

5 Λ9
5 Γ̂9

5 Λ̂4
5 Λ̂5

5 Λ̂6
5 Λ̂7

5 Λ̂8
5 Λ̂9

5

1.433 0 0 0 -13.81 23.33 -9.912 1.363 -0.04853 -0.006372 0.02142 -13.75 23.33 -9.890

∆θi, ∆Vi, ∆Pi, and ∆Qi are sufficiently small, we can

approximate (5) as

P 0
i +∆Pi ≈ pi(θ

0
1 , . . . , θ

0
N , V 0

1 , . . . , V
0
N )

+
∑

j∈NG∪NL

Ψj
i∆θj +

∑

j∈NL

Φj
i∆Vj , (7)

for each i ∈ NG ∪NL, and (6) as

Q0
i +∆Qi ≈ qi(θ

0
1 , . . . , θ

0
N , V 0

1 , . . . , V
0
N )

+
∑

j∈NG∪NL

Γj
i∆θj +

∑

j∈NL

Λj
i∆Vj , (8)

for each i ∈ NL, where

Ψj
i =

∂pi

∂θj
, Φj

i =
∂pi

∂Vj

, Γj
i =

∂qi

∂θj
, and Λj

i =
∂qi

∂Vj

,

all of which are evaluated at the nominal operating point

(θ0i , V
0
i , P

0
i , Q

0
i ), i = 1, . . . , N . Note that in (7)–(8), we have

accounted for the fact that the voltages at the slack bus and

the voltage-controlled buses are fixed. Next, we illustrate the

ideas presented above with an example.

Example 1 (3-Machine 9-Bus System): In this example, we

consider the WECC 3-machine, 9-bus system model (see, e.g.,

[19]). In this system, bus 1 is designated as the slack bus;

there are NG = 2 voltage-controlled buses, consisting of

NG = {2, 3}; and there are NL = 6 load buses, consisting of

NL = {4, 5, . . . , 9}. In this example, we compute model-based

sensitivity factors by linearizing the power flow equations

in (7)–(8). In the left-half portion of Table I, we report the

sensitivities of active and reactive power injections at bus 4

with respect to voltage magnitudes and phase angles at all

other buses. �

The traditional model-based approach described above is

not ideal since accurate and up-to-date network topology,

parameters, and operating point are required. In this paper,

we aim to eradicate the reliance on system models in the

computation of the sensitivities defined in (1)–(4), and improve

adaptability to changes occurring in the system. With regard to

this, we propose a method to estimate these sensitivities using

only PMU measurements obtained in near real-time without

relying on the full nonlinear power flow model of the system.

B. Measurement-Based Approach to Jacobian Computation

Denote the voltage phase angle at bus j at times t and

t+∆t, ∆t > 0 and small, as θj(t) and θj(t+∆t), respectively.

Also denote the voltage magnitude at bus j at times t and

t+∆t, as Vj(t) and Vj(t+∆t), respectively. Define ∆θj(t) =
θj(t + ∆t) − θj(t) and ∆Vj(t) = Vj(t + ∆t) − Vj(t); then,

according to the approximations of Ψj
i , Φj

i , Γj
i , and Λj

i in (1)–

(4), we have that, at time t,

Ψj
i ≈

∆P
θj
i (t)

∆θj(t)
, Φj

i ≈
∆P

Vj

i (t)

∆Vj(t)
, (9)

Γj
i ≈

∆Q
θj
i (t)

∆θj(t)
, and Λj

i ≈
∆Q

Vj

i (t)

∆Vj(t)
. (10)

We assume θj(t), Vj(t), θj(t + ∆t), and Vj(t + ∆t) are

measurements available from PMUs. As evidenced in (9), in

order to compute Ψj
i and Φj

i , we also need ∆P
θj
i (t) and

∆P
Vj

i (t), which are not readily available from PMU mea-

surements. However, we assume that the total variation in net

active power injection at bus i (i.e., ∆Pi(t)) is available from

PMU measurements. We express this total variation as the sum

of active power injection variations at bus i ∈ NG∪NL due to

variations in voltage phase angle j ∈ NG∪NL and magnitude

at each bus j ∈ NL:

∆Pi(t) ≈
∑

j∈NG∪NL

∆P
θj
i (t) +

∑

j∈NL

∆P
Vj

i (t). (11)

Similarly, from (10), we note that in order to compute Γj
i

and Λj
i , we need ∆Q

θj
i (t) and ∆Q

Vj

i (t), which are not

readily available from PMU measurements. By making similar

assumptions to the ones used in the derivation of (11), we

express the net variation in net reactive power injection at bus

i as

∆Qi(t) ≈
∑

j∈NG∪NL

∆Q
θj
i (t) +

∑

j∈NL

∆Q
Vj

i (t). (12)

Now, by substituting (9) into (11), we can express (11) as

∆Pi(t) ≈
∑

j∈NG∪NL

∆θj(t)Ψ
j
i +

∑

j∈NL

∆Vj(t)Φ
j
i ,

where Ψj
i ≈ ∆P

θj
i

∆θj
and Φj

i ≈ ∆P
Vj
i

∆Vj
. Analogously, by

substituting (10) into (12), we can express (12) as

∆Qi(t) ≈
∑

j∈NG∪NL

∆θj(t)Γ
j
i +

∑

j∈NL

∆Vj(t)Λ
j
i ,

where Γj
i ≈

∆Q
θj
i

∆θj
and Λj

i ≈
∆Q

Vj
i

∆Vj
.

Suppose M + 1 sets of synchronized measurements are

available. Let

∆Pi[k] = Pi((k + 1)∆t)− Pi(k∆t),

∆Qi[k] = Qi((k + 1)∆t)−Qi(k∆t),

∆θi[k] = θi((k + 1)∆t)− θi(k∆t),

∆Vi[k] = Vi((k + 1)∆t)− Vi(k∆t),
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k = 1, . . . ,M . Next, define ∆Pi = [∆Pi[1], . . . ,∆Pi[M ]]T

and ∆Qi = [∆Qi[1], . . . ,∆Qi[M ]]T ; similarly, define ∆θi =
[∆θi[1], . . . ,∆θi[M ]]T and ∆Vi = [∆Vi[1], . . . ,∆Vi[M ]]T .

Then, we obtain the following systems of equations:

∆Pi ≈
[

(∆θj)j∈NG∪NL
(∆Vj)j∈NL

]

[

Ψi

Φi

]

, (13)

where

Ψi =
[
(

Ψj
i

)

j∈NG∪NL

]

and Φi =
[
(

Φj
i

)

j∈NL

]

,

and

∆Qi ≈
[

(∆θj)j∈NG∪NL
(∆Vj)j∈NL

]

[

Γi

Λi

]

, (14)

where

Γi =
[
(

Γj
i

)

j∈NG∪NL

]

and Λi =
[
(

Λj
i

)

j∈NL

]

.

In (13)–(14), we assume that the relationship between ∆Pi

and [ΨT
i ,Φ

T
i ]

T and the one between ∆Qi and [ΓT
i ,Λ

T
i ]

T

are approximately linear. Under this assumption, we seek

the best estimate for [ΨT
i ,Φ

T
i ]

T and [ΓT
i ,Λ

T
i ]

T given the

measured observations. It is worth noting that, in some sense,

the formulation of (13) and (14) represents the worst-case

scenario, in which we assume system topology and parameter

information are wholly unavailable. Later, in Section IV, we

relax this restriction and expect that, with a priori knowledge

of the system, the method proposed in Section III will result in

more accurate estimates of the sensitivity factors [ΨT
i ,Φ

T
i ]

T

and [ΓT
i ,Λ

T
i ]

T .

C. Problem Statement

Suppose the systems in (13)–(14) are overdetermined, i.e.,

M > N̄ = NG + 2NL. Then, a natural solution approach

is to obtain Ψi, Φi, Γi, and Λi via least-squares errors

(LSE) estimation. In ordinary LSE estimation, the regressor

matrix is assumed to be free of error; hence all errors are

confined to the observation vector (in our setting, ∆Pi or

∆Qi). This assumption, however, is not entirely appropriate in

our problem setting, since ∆Pi, ∆Qi, ∆θj , and ∆Vj are all

constructed from PMU measurements obtained in real-time.

In such a case where modeling and measurement errors are

associated with both the observation vectors and the regressor

matrix, total least-squares (TLS) estimation, instead of LSE

estimation, is one appropriate method for fitting [20].

III. TOTAL LEAST-SQUARES APPROACH TO JACOBIAN

ESTIMATION

In our setting, measurement and modeling errors enter

into both the regressor matrix and the observation vectors

in (13)–(14). In this section, we formulate the TLS estimation

problem and its solution with respect to the system in (13) (the

formulation with respect to the system in (14) is analogous).

Further, for ease of notation, let

A =
[

(∆θj)j∈NG∪NL
(∆Vj)j∈NL

]

,

and also let bi = ∆Pi. Based on the expression above, we can

rewrite (13) as

bi ≈ A
[

ΨT
i ΦT

i

]T
. (15)

Since (15) is an overdetermined system of equations, in

the remainder of this section, we formulate the problem of

computing [ΨT
i ,Φ

T
i ]

T in (15) as a TLS estimation problem.

We note, however, that the ideas presented in this section are

immediately applicable to estimate the unknown vectors in

both systems described in (13)–(14).

A. Basic Total Least-Squares Approach

Before delving into the TLS estimation problem formulation

and associated solution, we briefly describe the ordinary LSE

problem formulation and its solution, as it applies to our

setting. In ordinary LSE, since the regressor matrix is assumed

to be error free, the rationale behind this estimation method

is to correct the observations bi as little as possible under

the Euclidean norm metric; this can be formulated as an

optimization program as follows (see, e.g., [20]):

min
b̂i∈RM

||∆bi||2 ,

s.t. b̂i = A
[

ΨT
i ΦT

i

]T
,

(16)

where ∆bi = bi − b̂i. Once a minimizer, b̂i, is found, then

any [Ψ̂T
i , Φ̂

T
i ]

T satisfying b̂i = A[Ψ̂T
i , Φ̂

T
i ]

T is a LSE solution

to (15). We assume A has full column rank; under this

condition, the closed-form unique solution to (16) is (see,

e.g., [21])
[

Ψ̂i

Φ̂i

]

=
(

ATA
)−1

AT bi. (17)

In contrast to the LSE problem formulation in (16), since

TLS estimation accounts for errors in A as well, analogous to

the vector Euclidean norm, its problem formulation seeks to

minimize the matrix Frobenius norm, as follows:

min
[Â b̂i]∈RM×(N̄+1)

||[∆A ∆bi]||F ,

s.t. b̂i = Â
[

ΨT
i ΦT

i

]T
,

(18)

where ∆A = A− Â, ∆bi = bi− b̂i, and N̄ = NG+2NL [20].

Then, once a minimizing [Â b̂i] is found, then any [Ψ̂T
i , Φ̂

T
i ]

T

satisfying b̂i = Â[Ψ̂T
i , Φ̂

T
i ]

T is a TLS solution to (15).

The solution to the TLS estimation problem in (18) relies

heavily on the singular value decomposition (SVD) (see,

e.g., [22]); below, we describe the procedure (see, e.g., [23])).

To obtain the solution to (18), we rewrite (15) as (see,

e.g., [20])
[

A bi
] [

ΨT
i ΦT

i −1
]T ≈ 0. (19)

By using the SVD, we can write
[

A bi
]

= UΣV T , (20)

where U = [u1, . . . , uM ] and V = [v1, . . . , vN̄+1] are

unitary matrices, Σ is a diagonal matrix in which the diagonal

elements σi are the singular values of [A bi] (see, e.g., [22]). If

σN̄+1 6= 0, then [A bi] has rank N̄+1 and the unique solution

to (19) is the zero vector. In order to obtain a nonzero solution
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to (19), the rank of [A bi] must be reduced to N̄ . According

to the Eckart-Young-Mirsky low-rank matrix approximation

theorem [24], the rank N̄ approximation of [A bi], which

minimizes the objective function in (18), is

[

Â b̂i
]

= U Σ̂V T , (21)

where Σ̂ is a diagonal matrix in which the diagonal elements

σ̂i = σi, if i < N̄ + 1, and σ̂i = 0, otherwise. Since the

approximate matrix [Â b̂i] has rank N̄ , (19) has a nonzero

solution. Based on properties of the SVD, vN̄+1 is the only

vector that belongs to the null space of [Â b̂i]. Then, the TLS

solution is obtained by scaling the vector vN̄+1 until its last

component is equal to −1, namely,

[

Ψ̂T
i Φ̂T

i −1
]T

= − 1

vN̄+1
N̄+1

vN̄+1,

where vN̄+1
N̄+1

denotes the (N̄ + 1)th element of vN̄+1. Thus,

the unique TLS solution to (15) is

[

Ψ̂T
i Φ̂T

i

]T
= − 1

vN̄+1
N̄+1

[

v1
N̄+1

· · · vN̄
N̄+1

]T

. (22)

Next, we illustrate the concepts introduced above.

Example 2 (3-Machine 9-Bus System): In this example,

we consider the same system as in Example 1. Here, we

use (22) to estimate the entries in each row of the power flow

Jacobian matrix and compare the results to the benchmark

values recorded in the left-half portion of Table I. In order to

simulate PMU measurements of slight fluctuations in active

and reactive power generated and consumed at each bus,

we generate power injection (positive or negative) time-series

data. To this end, we assume the active power injection at bus

i at time instant k, denoted by Pi[k], can be modeled as

Pi[k] = P 0
i [k] + P 0

i [k]ν
P
1 + νP2 , (23)

where P 0
i [k] is the nominal active power injection at time

instant k, and νP1 and νP2 are pseudorandom values drawn from

standard normal distributions with zero mean and standard

deviations σP
1 = 0.1 and σP

2 = 0.1, respectively. Similarly,

we assume the reactive power injection at bus i at time instant

k, denoted by Qi[k], can be modeled as

Qi[k] = Q0
i [k] +Q0

i [k]ν
Q
1 + ν

Q
2 , (24)

where Q0
i [k] is the nominal reactive power injection, and

ν
Q
1 and ν

Q
2 are pseudorandom values drawn from standard

normal distributions with zero mean and standard deviations

σ
Q
1 = 0.1 and σ

Q
2 = 0.1, respectively. In both (23) and (24),

there are two random components added to the deterministic

nominal quantities. The first component, P 0
i [k]ν

P
1 in (23)

(Q0
i [k]ν

Q
1 in (24)), represents the inherent fluctuations in active

(reactive) power generation and load. The second component,

νP2 in (23) (ν
Q
2 in (24)), represents random measurement noise,

which is independent of the nominal active (reactive) power

injection values. For each set of bus injection data, we solve

the power flow equations, with the slack bus absorbing all

power imbalances, to obtain the voltage magnitude and phase

“measurements”.

TABLE II: WECC 3-machine 9-bus systems—MSE of sensi-

tivity factors obtained in Example 2 compared to correspond-

ing model-based benchmark. To make the table more compact,

all numerical quantities have been scaled up by ×103.

Ψ̂2 0.09289 Φ̂2 0.6921

Ψ̂3 0.1357 Φ̂3 0.9754

Ψ̂4 13.73 Φ̂4 22.28 Γ̂4 42.60 Λ̂4 58.39

Ψ̂5 8.616 Φ̂5 41.82 Γ̂5 16.55 Λ̂5 5.933

Ψ̂6 7.446 Φ̂6 11.53 Γ̂6 4.911 Λ̂6 22.12

Ψ̂7 2.792 Φ̂7 6.452 Γ̂7 1.857 Λ̂7 11.84

Ψ̂8 10.26 Φ̂8 1.054 Γ̂8 5.044 Λ̂8 1.219

Ψ̂9 2.987 Φ̂9 7.142 Γ̂9 3.730 Λ̂9 2.831

In this example, we simulate 100 sets of power injection

and voltage measurements with the same network topology

and operating point. In the right-half portion of Table I, we

report TLS estimates corresponding to the entries in the left-

half portion of Table I. By visually comparing the model-based

sensitivities and measurement-based estimates in Table I, we

note that the measurement-based TLS estimation achieves val-

ues that are very close to the model-based benchmark values

obtained by directly linearizing the power flow equations. In

addition to the visual comparison, we compute the mean-

squared error (MSE) of each sensitivity vector and report them

in Table II. In this case, the average MSE is 0.01169. �

B. Weighted Total Least-Squares Approach

One of the assumptions we make in (18) is that the Jacobian

matrix sensitivity factors are approximately constant across the

estimation time window. One way to eliminate this restriction

and to obtain an estimator that is more adaptive to changes

in operating point is to place more importance on recent

measurements and less on earlier ones, which may be out of

date. Again, before we delve into the WTLS estimation prob-

lem formulation, we briefly describe the ordinary weighted

least-squares (WLS) estimation problem setting in which the

objective function in (16) becomes

min
b̂i∈RM

∣

∣

∣

∣

∣

∣

√
W∆bi

∣

∣

∣

∣

∣

∣

2
, (25)

where W is a positive definite symmetric matrix. The solution

to (25) is given by (see, e.g., [21])
[

Ψ̂i

Φ̂i

]

=
(

ATWA
)−1

ATWbi. (26)

The idea is to choose appropriate values for W so that more

recent measurements are weighted preferentially over past

ones. If the elements of the error vector ∆bi are uncorrelated,

then W = [W (i, j)] is a diagonal matrix. The WLS estimation

problem is often formulated using an exponential forgetting

factor [25], in which the more recent measurements are

preferentially weighted by setting W (i, i) = fM−i for some

fixed f ∈ (0, 1], where f is called a “forgetting” factor.

In the WTLS estimation problem setting, the optimization

in (18) becomes

min
[Â b̂i]∈RM×(N̄+1)

F0 (∆A,∆bi) ,

s.t. b̂i = Â
[

ΨT
i ΦT

i

]T
,

(27)
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with

F0(·) =
M
∑

k=1

∆a[k]Wk∆a[k]T + wk∆bi[k]
2, (28)

where ∆a[k] denotes the kth row of ∆A, ∆bi[k] is the kth ele-

ment of ∆bi, and matrix Wk and scalar wk represent weighting

factors for elements in ∆a[k] and ∆bi[k], respectively. Next,

we discuss the selection of these weighting factors.

1) Choice of Weighting Factors: Inspired by ordinary WLS

estimation, we set wk = fM−k, so as to weigh the more recent

elements in the observation vector, bi, more heavily. With

regard to the choice of Wk’s, first, we assume that the elements

of the error vector ∆a[k] are uncorrelated; therefore the matrix

Wk = [Wk(i, j)] is diagonal. Furthermore, if measurements

obtained at each bus are equally reliable, then the elements

of ∆a[k] are equally weighted. Then, by employing the

exponential forgetting factor, we set Wk(i, i) = wk , for all i.

With the above choices for wk and Wk , if f = 1, then

all measurements are given equal weighting, and the WTLS

formulation in (27) is equivalent to the TLS one in (18).

On the other hand, if f < 1, then earlier measurements

would not contribute as much to the final estimate [Ψ̂T
i , Φ̂

T
i ]

T

as more recent ones. In this way, the WTLS formulation is

useful if the system experiences a change in operating point

during the measurement acquisition time window. With the

weighting factors chosen as described above, we next describe

the solution to the optimization problem in (27).

2) WTLS Problem Solution: Note that if Wk = IN̄ , where

IN̄ denotes an N̄ × N̄ identity matrix, and wk = 1, for all

k = 1, . . . ,M , then the formulation in (27) is equivalent

to that in (18). Unlike the basic TLS problem, however,

the WTLS problem does not have a SVD-based closed-form

solution. In order to solve (27), we follow the development

described in [26], which is summarized below. We first note

that the equality constraint in (27) is equivalent to bi−∆bi =
(A−∆A)[Ψ̂T

i , Φ̂
T
i ]

T , i.e.,

∆bi[k] =
[

ΨT
i ΦT

i

] (

∆a[k]T − a[k]T
)

+ bi[k], (29)

for each k = 1, . . . ,M , where a[k] denotes the kth row

of A. Substituting (29) into (28), we obtain the following

unconstrained optimization problem:

min
Â,[ΨT

i
,ΦT

i
]T
Fu

(

[

ΨT
i ΦT

i

]T
,∆A

)

, (30)

where

Fu(·) =
M
∑

k=1

∆a[k]Wk∆a[k]T + wk

([

ΨT
i ΦT

i

]

∆a[k]T

−
[

ΨT
i ΦT

i

]

a[k]T + bi[k]
)2

. (31)

We note that Fu(·) is differentiable with respect to ∆a[k],
for each k = 1, . . . ,M . Suppose ∆A∗ is a local minimizer

of (30). Then, according to first-order necessary conditions for

optimality, at ∆A∗ (see, e.g., [27, Chap. 11]), we have that

0 =
dFu

d∆a[k]

∣

∣

∣

∣

∆a[k]=∆a∗[k]

, k = 1, . . . ,M,

from which we obtain

∆a∗[k]T =

[

Wk +

[

Ψi

Φi

]

[

ΨT
i ΦT

i

]

wk

]−1

× wk

([

ΨT
i ΦT

i

]

a[k]T − bi[k]
)

[

Ψi

Φi

]

, (32)

for each k = 1, . . . ,M . By invoking the matrix inversion

lemma (see, e.g., [22]), (32) simplifies to

∆a∗[k]T =

[

ΨT
i ΦT

i

]

a[k]T − bi[k]

w−1
k +

[

ΨT
i ΦT

i

]

W−1
k

[

Ψi

Φi

]W−1
k

[

Ψi

Φi

]

. (33)

Finally, we substitute each optimal ∆a∗[k] as given in (33)

into (31), from which we reformulate the optimization problem

in (30) as

min
[ΨT

i
,ΦT

i
]T
F
(

[

ΨT
i ΦT

i

]T
)

, (34)

where

F (·) =
M
∑

k=1

([

ΨT
i ΦT

i

]

a[k]T − bi[k]
)2

w−1
k +

[

ΨT
i ΦT

i

]

W−1
k

[

Ψi

Φi

] . (35)

Through the development above, we convert the original

constrained WTLS problem in (27) into the less troublesome

unconstrained minimization problem in (34). The optimization

problem in (27) (or (34)) is nonconvex; therefore, numerical

solution methods do not guarantee convergence to a global

minimum. Many numerical algorithms, most of which are

iterative, have been proposed to solve (27) or (34) (see,

e.g., [23], for an overview). For our case studies, we find

that built-in optimization routines in MATLAB are sufficient as

proof-of-concept to demonstrate the feasibility of the proposed

power flow Jacobian estimation framework. In a commercial

implementation of the proposed framework, it may be prudent

to investigate convergence properties of various solution meth-

ods. We refrain from further discussion on this topic here as

it is beyond the scope of the present work. Next, we illustrate

the ideas presented above with an example.

Example 3 (3-Machine 9-Bus System): We consider the

same system as in Example 1 and simulate 200 sets of PMU

measurements of slight fluctuations. In order to simulate an

undetected change in operating point, without updating the

model, the active load at bus 6 linearly increases by 1.6

p.u. over the span of 20 measurements beginning at k = 80,

with the generation at bus 2 also increasing commensurately

at each time step.

As in Example 2, we compute the power flow, with the

slack bus absorbing all power imbalances for each particular

time k. Table III shows a comparison between benchmark

sensitivity factors obtained via direct linearization of the power

flow equations around the operating point (both before and

after the change), and those obtained via the proposed WTLS

framework with forgetting factors f = 0.96 and f = 1. Both

measurement-based estimations are executed at k = 200 with

the previous M = 200 measurements. Since the operating

point is undetected by operators, under the pre-change system

model, the power flow Jacobian matrix (some entries of which
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TABLE III: WECC 3-machine 9-bus systems—model- and

measurement-based sensitivity factors obtained in Example 3.

Model-based Measurement-based

Post-change Pre-change f = 0.96 f = 1

Ψ2
5 0 0 -0.5254 -0.2637

Ψ3
5 0 0 0.08467 0.9688

Ψ4
5 -9.685 -10.86 -9.599 -10.66

Ψ5
5 0 0 -0.2559 0.1843

Ψ6
5 14.60 16.54 14.97 15.52

Ψ7
5 0 0 0.6563 0.2575

Ψ8
5 0 0 -0.1905 0.4154

Ψ9
5 -4.911 -5.6816 -5.137 -6.780

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Average MSE 0.2956 0.1979 0.4501

are shown in column 3 of Table III) results in an average MSE

of 0.2956. In column 5 of Table III, we record results for

WTLS with f = 1 (or, equivalently, TLS). From the average

MSE metric, as well as a survey of the individual values,

reported in this column, we note that the basic TLS scheme is

unable to estimate the updated Jacobian matrix elements. On

the other hand, the WTLS method with f = 0.96 is able to

track elements in the Jacobian matrix, as shown in column 4

of Table III. However, compared to the SVD computation

in basic TLS, the WTLS optimization incurs much higher

computational burden; thus, the cost of better tracking is longer

computation time and lack of optimality guarantee.

By observing estimation results in both Tables I and III, we

note that while the TLS-based schemes are able to track the

nonzero terms with sufficient accuracy, the resulting estimated

signal is quite noisy, with many near-zero terms. �

IV. ESTIMATION WITH A SUBSET OF MEASUREMENTS

In the proposed Jacobian matrix estimation framework pre-

sented thus far, to estimate the unknown sensitivity factors,

with respect to bus i, voltage magnitude and phase angle

measurements are required from all buses. In other words,

the framework necessitates a central data collector to whom

all measurements are passed. Moreover, it requires at least

as many time-sampled sets of measurements as the number

of columns of the Jacobian matrix. Both of these restrictions

become unwieldy for large-scale power systems. First, since

power systems are constantly undergoing changes and opera-

tors often need to quickly determine the current system state,

it would be ideal to obtain accurate estimates using fewer

data sets. Furthermore, in a practical setting, the entire set

of measurements may not be available for transmission to a

central data collector.

In order to relax the restrictions described above, we note

that, due to the structure of the power flow equations, the

sensitivity factors Ψj
i , Φj

i , Γj
i , and Λj

i are only nonzero if

i = j, or if there exists a transmission line connecting buses i

and j. Such information can be obtained a priori from a known

base-case system network model or from real-time breaker

status information. With this in mind, we define Ni as the set

of buses that are connected to bus i, including bus i itself.

Then, based on the full systems of equations in (13)–(14), we

can obtain the following reduced systems of equations:

∆Pi ≈
[

(∆θj)j∈(NG∪NL)∩Ni
(∆Vj)j∈NL∩Ni

]

[

ΨNi

i

ΦNi

i

]

,

(36)

where

ΨNi

i =

[

(

Ψj
i

)

j∈(NG∪NL)∩Ni

]

and ΦNi

i =
[
(

Φj
i

)

j∈NL∩Ni

]

are reduced sensitivity vectors that contain only the nonzero

entries of Ψi and Φi, respectively; and

∆Qi ≈
[

(∆θj)j∈(NG∪NL)∩Ni
(∆Vj)j∈NL∩Ni

]

[

ΓNi

i

ΛNi

i

]

,

(37)

where

ΓNi

i =

[

(

Γj
i

)

j∈(NG∪NL)∩Ni

]

and ΛNi

i =
[
(

Λj
i

)

j∈NL∩Ni

]

contain only the nonzero entries of Γi and Λi, respectively.

Similar to the full formulation in (13)–(14), we can ob-

tain estimates of the reduced sensitivity vectors in (36)–(37)

via (22) and the solution of (34). Unlike the full formulation,

however, to obtain estimates of these reduced sensitivity fac-

tors with respect to bus i, it suffices to acquire M > 2(#Ni)
sets of synchronized measurements to compute a row of the

Jacobian matrix,1 thus reducing the computational burden

involved.

The solution to (36)–(37) can be computed at each bus, thus

enabling parallel processing, so that the full system topology

and relevant parameters can be obtained quickly. The local

topology information can be transmitted to a central controller

periodically, or when the resulting estimates indicate an update

is required.

V. CASE STUDIES

We use the proposed measurement-based approach to es-

timate the Jacobian matrix in the IEEE 118-bus system.

The simulation tool MATPOWER [19] is used throughout

to solve the power flow and generate voltage magnitude and

phase angle measurements from pseudo-random bus injections

generated using (23) and (24).

A. Base Case

We consider the base case model for the IEEE 118-bus sys-

tem and assess the effectiveness of the proposed measurement-

based method to estimate the power flow Jacobian matrix

under constant nominal operating point. As in Example 2, we

simulate bus injection data by adding noise to the nominal

injections, as given in (23)–(24), with σP
1 = σ

Q
1 = 0.03 and

σP
2 = σ

Q
2 = 0.01. For comparison, we obtain benchmark

values by linearizing the power flow equations around the

nominal operating point.

1#A denotes the cardinality of set A.
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1) Measurements from All Buses: We utilize data from all

buses and compute estimates for the elements of the power

flow Jacobian by solving the full problems in (13)–(14).

We assume the time window under consideration contains

M = 1000 sets of synchronized measurements. Using (22), in

conjunction with simulated measurements from all buses, we

obtain estimates of Ψi and Φi, for i ∈ NG∪NL, as well as Γi

and Λi, for i ∈ NL. When comparing these estimated vectors

to their corresponding model-based benchmark values, we find

that the mean MSE for all estimated vectors is 0.00497, with

the maximum being 0.5090.

2) Measurements from a Subset of Buses: Suppose each

bus is equipped with the computational capability required to

conduct its own sensitivity estimation. Then, as described in

Section IV, each estimation problem solves fewer unknown

sensitivity factors and requires fewer sets of synchronized

measurements. Therefore, we use the first M = 40 sets of

measurements from the full-system Jacobian matrix estimation

above. We assume that each bus is able to attain voltage

magnitude and phase angle measurements from its neighbors.

Via (34), we solve for the unknown vectors in (36)–(37) for

each i = 1, . . . , N , and further compare them to corresponding

model-based benchmark values. We find the average MSE to

be 0.001523, with the maximum being 0.1936.

B. Change in Topology

Under the reduced formulation presented in Section IV, we

assess the performance of the proposed WTLS framework,

as described in Section III-B, to update the entries of the

Jacobian matrix after a topology change. With respect to this,

we simulate M = 100 sets of synchronous measurements by

computing the power flow solution using power injection data

generated via (23)–(24) with σP
1 = σ

Q
1 = σP

2 = σ
Q
2 = 0.1.

To simulate a topology change, we introduce a credible line

outage (i.e., one that does not island the system) at time step

k = 30. As in Example 3, we use a forgetting factor of

f = 0.96. We repeatedly simulate random sample paths with

random line outages.

Overall, the proposed WTLS estimation method is able

to adapt and obtain accurate estimates for 63.84% of the

affected Jacobian matrix entries, where the estimate is deemed

“accurate” if it is within 10% of the corresponding post-change

Jacobian entry. Since the optimization problem in WTLS is

nonconvex, iterative numerical solution methods may only

attain a local minimum, as evidenced by the low estimation

accuracy. In contrast, for the same random sample paths and

forgetting factor, the WLS estimates, obtained via (26), are

accurate for 84.72% of the affected entries.

VI. CONCLUDING REMARKS

In this paper, we presented a measurement-based method to

estimate the power flow Jacobian matrix without relying on

the system power flow model. The proposed method relies

on the solution of an overdetermined set of linear equa-

tions constructed from real-time measurements obtained with

PMUs installed throughout the system. Via TLS estimation,

we account for measurement errors in both the observation

vector as well as the regressor matrix. We showed that the

proposed method provides accurate estimates of the Jacobian

matrix entries. Furthermore, we improve the adaptability of the

proposed method by employing WTLS and WLS estimation.

As future work, we would like to take advantage of the

sparsity structure in the Jacobian matrix to obtain estimates

without relying on a priori base-case topology or real-time

breaker status information. Moreover, the method described

in Section IV motivates further exploration into coordinated

Jacobian-matrix estimation within a hierarchical computation

architecture.
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