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Abstract—This paper presents a detailed formulation of the
power-flow problem for inverter-based power systems. Specif-
ically, we consider systems that comprise a group of grid-
forming and grid-following inverter-based resources that are
interconnected via a network of transmission lines. A full-order
model of the power system is presented, and an associated
steady-state model is derived, from which the corresponding
power-flow problem is formulated. We provide numerical results
comparing the steady-state response of the full-order models with
the solution provided by the proposed power flow model.

I. INTRODUCTION

Due to the increasing deployment of inverter-based re-
sources (IBRs), and the progressive transition from syn-
chronous generators to inverter-interfaced counterparts, the
dynamical behavior of the electric power grid will be signifi-
cantly altered. Accordingly, it is necessary to develop accurate
mathematical models that capture the dynamic and steady-
state characteristics of electrical power networks that rely
exclusively on inverter-based resources for power generation.

The main contributions of this paper are as follows: (1) de-
rive a steady-state model for power networks that are based on
grid-forming (GFM) and grid-following (GFL) inverters, and
(2) develop the power-flow formulation for such systems. For
each bus that a GFM (GFL) inverter is connected to, we show
that the power flow problem comprises five (three) algebraic
equations that describe terminal relations between the inverter
setpoints, internal state variables, the steady-state frequency of
the grid, and the bus voltage magnitude and phase.

The development of full-order and reduced-order models for
inverter-based power systems has received significant attention
in the literature. The authors in [1], [2] present reduced-order
models for microgrids that are obtained using small-signal
analysis. The authors in [3]–[6] provide detailed results on
the model-order reduction of inverter-based microgrids using
singular perturbation analysis. The authors in [7], [8] develop
a detailed full-order model for GFM inverter-based systems.
The authors in [9], [10] present models for GFM inverter-
based grids, which are obtained by performing successive
model reduction steps on a full-order model using singular
perturbation analysis. Although these efforts present reduced-
order models for inverter-based power networks, a derivation
of the corresponding steady-state power-flow formulations has
not been derived; we address this gap.

Notation: The n× n diagonal matrix with diagonal entries
x1, . . . , xn is denoted by diag(x1, . . . , xn). The identity ma-
trix is denoted by I, the standard basis vector with 1 in the k-th
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entry is denoted by ek, and the all-zeros and all-ones vectors
are denoted by O and 1, respectively. (Dimensions of I, ek, O,
and 1 are not specified in the notation, with the understanding
that they can be inferred from the context.)

Reference-frame Transformations: For balanced three-phase
networks, we consider two direct-quadrature rotating reference
frames as follows: (i) the DQ reference frame (also referred
to as synchronously rotating reference frame), which rotates
in synchrony with the system nominal angular frequency—
assumed to be constant; and (ii) the dq reference frame,
which rotates at a time-varying frequency whose value is
determined by the reference angular frequency of a particular
GFM inverter (see [11, pp. 69–114] for more details). In the
remainder, all three-phase variables and companion signals are
represented in either the DQ or dq reference frames. Denote

f ′(t) = [fD(t), fQ(t)]
>, f ′′(t) = [fd(t), fq(t)]

>, (1)

as the DQ and dq representations of f(t), respectively. Define

δ(t) = δ0 +

∫ t

0

(ω◦(x)− ω0) dx, (2)

with δ0 = δ(0), and where ω0 and ω◦(t) respectively denote
the nominal angular frequency and the reference angular
frequency of a particular inverter. Then, f ′(t) and f ′′(t) are
related via

f ′′(t) = R(δ(t))f ′(t), (3)

where R(·) is the transformation matrix given by

R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
.

Henceforth, we will simplify the adopted notation by dropping
the time argument in all quantities.

Paper Organization: In Section II, we describe the steady-
state models for the network, the GFM inverter, and the GFL
inverter. In Section III, we formulate the power-flow problem
for inverter-based power systems. In Section IV, numerical
results that compare the response of the full-order model and
the power-flow model are presented. Concluding remarks are
provided in Section V.

II. THE STEADY-STATE MODELS

This section describes steady-state models for electrical
power networks based on GFL and GFM inverters. The models
are derived from full-order dynamic models of GFM and
GFL inverters (see [12], [13] for detailed descriptions of such
models) by setting the derivative of said models to zero.



Consider the IBR connected to bus k of an electrical power
network. Let ωss denote the steady-state frequency of the
power network, and let ωk denote the frequency of the IBR.
In steady-state, we must have

ωk = ωss, ∀k. (4a)

Also, let sr,k and sr,0 denote the rated three-phase powers of
the IBR and the electrical network, respectively, and define:

σk =
sr,k
sr,0

. (4b)

Finally, let i′g,k denote the grid-side current of the IBR’s LCL
filter, in a per-unit system with base power sr,k, and let i′k
denote the current injection at bus k, in a per-unit system
with base power sr,0 and same base voltage as i′g,k. Then, it
follows that:

i′k = σki
′
g,k. (4c)

A. The Power Network

We consider power networks comprising n > 1 buses
that are interconnected via m short transmission lines.1 Ac-
cordingly, each transmission line can be described using a
series resistance and inductance, and without loss of generality,
we assume there is at most one transmission line connect-
ing each pair of buses.2 We write B = {1, 2, . . . , n} and
L = {1, 2, . . . ,m} to denote the sets that index the buses and
transmission lines in the power network, respectively. Suppose
that each bus of the power network has either a GFM inverter,
a GFL inverter, or a constant power load connected to it. We
write Iv ⊆ B to denote the set of buses with a GFM inverter
connected to them, and write Ii ⊆ B to denote the set of buses
with a GFL inverter connected to them, so that Iv ∩ Ii = ∅.
Finally, we define I = Iv ∪Ii and write N = B \I to denote
the set of buses with a constant power load connected to them.

Let E ⊂ B × B \ {(k, k) : k ∈ V} denote the set of
transmission lines so that (k, j) ∈ E if buses k and j are
electrically connected, with the flow of power from bus k
to bus j assigned to be positive. Let L denote a one-to-
one mapping from E to L = {1, 2, . . . ,m} so that, for
each (k, j) ∈ E , there exists a unique ` ∈ L that satisfies
` = L(k, j). Accordingly, we can define a node-to-edge
incidence matrix, M = [mk`] ∈ Rn×m, with entries:

mk` = 1, if ` = L(k, j), (k, j) ∈ E ,
mk` = −1, if ` = L(j, k), (j, k) ∈ E ,
mk` = 0, otherwise.

The circuit model for each transmission line ` ∈ L is the
series connection of a resistance, r`, and an inductance, l`. In
the DQ reference frame, let v′k and i′k denote the voltage and
current injections at bus i ∈ B, respectively, and let f ′` denote
the current flowing through transmission line ` = L(k, j), all

1A transmission line is typically categorized as short if its effective length
is less than 50 miles (80 km) [14, p. 208].

2In the event that there are multiple transmission lines connecting a pair
of buses, they can be collectively represented as a single transmission line.

TABLE I: Generic functions for droop, VSM, and dVOC.

ff,k(x) fv,k(x) fe,k(x, y)

droop/VSM df,k dv,k x− y

dVOC x2

ω0κ1,k

x
κ1,k

κ2,k(x
2 − y2)y

in per-unit. Then, the steady-state values of the line currents
and the current injection at bus j are described by:

f ′` =
(
r`I− l`R(π2 )

)−1∑
k∈B

v′kmk`, i′k =

m∑
`=1

f ′`mk`. (5)

B. The Grid-forming Inverter

1) Primary Controller: In per-unit, let E?k and E◦k denote
the reference voltage-magnitudes obtained from a primary and
a tertiary control scheme, respectively, and let p?k and q?k denote
the reference active- and reactive-power injections obtained
from secondary/tertiary control schemes, respectively. Let e′k
and v′k denote the capacitor voltage of the inverter’s LCL filter
and the voltage at bus k, respectively. Let pm,k and qm,k denote
low-pass filtered versions of the active- and reactive-power
injections, respectively. Let ηk and αk denote the internal state
variable and output phase, respectively, of a phase-locked loop
(PLL) that is used to compute the frequency of the bus voltage
(the PLL is used in the VSM strategy, but not in droop or
dVOC). In units of rad, let ψk ∈ [0, 2π) denote a rotation
angle that, in steady-state, determines the nature of the tradeoff
between active power and reactive power in the voltage and
frequency response of the GFM inverter. Then, the steady-state
model for the primary controller is given by:

ωss − ω0 = e>1 R(ψk − π
2 )

1

ff,k(E◦k)

[
p?k − pm,k
q?k − qm,k

]
, (6a)

fe,k(E
◦
k , E

?
k) = e>2 R(ψk − π

2 )
1

fv,k(E◦k)

[
p?k − pm,k
q?k − qm,k

]
, (6b)[

pm,k
qm,k

]
=

1

σk

[
e′k
>
i′k

e′k
>
R(−π2 )i

′
k

]
, (6c)

0 = e>2 R(αk + δk)v
′
k, ηk = 0, (6d)

where ff,k(·), fv,k(·), and fe,k(·, ·) denote generic functions,
whose values depend on the adopted primary-control strategy,
i.e., droop, VSM, or dVOC, as detailed in Table I. In this
table, df,k and dv,k denote the frequency and voltage droop
coefficients of a droop/VSM strategy, in s rad−1 and per-
unit, respectively, and in per-unit, κ1,k and κ2,k denote the
synchronization gain and the voltage-amplitude control gain
of a dVOC strategy, respectively.

2) Current Limiter, PI Controllers, and LCL filter: Let
φ′′k denote the internal state variable of a PI controller that
regulates output voltage, and let i′′r,k denote the output of the
PI controller. Likewise, let γ′′k denote the internal state variable
of a PI controller that regulates the inverter-side current, and
let u′r,k denote the output of the PI controller. Let i′i,k and
i′g,k denote the inverter- and grid-side currents of the LCL



filter, respectively. Then, the steady state model of the current
limiter, the PI controller, and the filter are described by:

e′k =
(
I + kb,k(ρk − 1)A1,k(ρk)

)
R(−δk)e1E◦k

− kb,k(ρk − 1)A2,k(ρk)v
′
k, (6e)

i′i,k = ρkR(−δk)i′′r,k, (6f)

γ′′k =
ri,k
kIi,k

(
I +

ωss − ω0

ω0

li,k
ri,k

R(π2 )
)
R(δk)i

′
i,k, (6g)

i′′r,k = A1,k(ρk)e1E
◦
k −A2,k(ρk)R(δk)v

′
k, (6h)

i′k = σk
(
rg,kI− lg,kR(π2 )

)−1
(e′k − v′k), (6i)

φ′′k =
1

kIv,k

(
kPv,kkb,k(ρk − 1)− ρkωss − ω0

ω0

)
i′′r,k

+
ω0 − ωss

ω0σk
R(δk)i

′
k, (6j)

u′r,k = kIi,kR(−δk)γ′′k + e′k − ρk
ωssli,k
ω0

R(π2 − δk)i
′′
r,k, (6k)

ρk =− ε ln

(
exp

(
− 1

ε

)
+ exp

(
− imax

ε‖i′′r,k‖2

))
. (6l)

where kIv,k and kIi,k denote the integral gains for PI con-
trollers that regulate voltage and current, respectively, kPv,k

denotes the proportional gain of the PI controller that regulates
voltage, kb,k denotes the integrator anti-windup gain of the PI
controller that regulates voltage, ε denotes a small positive
parameter which ensures a close approximation of ρk to the

function min

(
1, imax

‖i′′r,k‖2

)
(see [12] for details), ri,k and li,k

denote the inverter-side resistance and inductance of the filter,
respectively, rg,k and lg,k denote sum of resistive and inductive
elements (from the filter and transmission line) on the grid
side, respectively, and ck denotes the filter capacitance. Also,
the matrices A1,k(·) and A2,k(·) are defined as follows:

A1,k(x) :=
1

a5,k(x)

[
a1,k(x) −a2,k(x)
a2,k(x) a1,k(x)

]
, (7a)

A2,k(x) :=
1

a5,k(x)

[
a3,k(x) a4,k(x)
−a4,k(x) a3,k(x)

]
, (7b)

where,

a1,k(x) =− (x− 1)kb,k
(
(cklg,k − 1)2 + c2kr

2
g,k

)
+ xrg,k,

a2,k(x) = x(ckr
2
g,k + (cklg,k − 1)lg,k),

a3,k(x) = (x− 1)kb,k
(
cklg,k − 1) + xrg,k,

a4,k(x) = − (x− 1)kb,kckrg,k + xlg,k,

a5,k(x) = (x− 1)2k2b,k
(
(cklg,k − 1)2 + (ckrg,k)

2
)

− 2x(x− 1)kb,krg,k + x2(r2g,k + l2g,k).

C. The Grid-following Inverter
1) Phase-locked Loop: Let ηk denote the internal state

variable of the PLL, and in the DQ reference frame, let
e′k denote the capacitor voltage of the LCL filter. Then, the
steady-state model of the PLL is described by:

0 = e>2 R(δk)e
′
k, ηk =

ωss

ω0kIθ,k
, (8a)

where kIθ,k denotes the integral gains of the PLL, in per-unit.

2) Current Limiter, PI Controller, and LCL filter: Lever-
aging the notation adopted in Section (II-B2), we have that
the steady-state model of the GFL inverter’s current-reference
limiter, the PI controller, and the LCL filter are described by:

i′i,k =
ρk
‖e′k‖2

R(−δk)
[
p?k
−q?k

]
, i′′r,k =

1

‖e′k‖2

[
p?k
−q?k

]
, (8b)

γ′′k =
ri,kρk

kIi,k‖e′k‖2

(
I +

ωss − ω0

ω0

li,k
ri,k

R(π2 )
)[

p?k
−q?k

]
, (8c)

O =
((
rg,kI− lg,kR(π2 )

)−1 − ckR(π2 ))e1‖e′k‖22 −
(
rg,kI

− lg,kR(π2 )
)−1

R(δk)v
′
k‖e′k‖2 − ρk

[
p?k
−q?k

]
, (8d)

i′k = σk
(
rg,kI− lg,kR(π2 )

)−1
(e′k − v′k), (8e)

u′r,k = kIi,kR(−δk)γ′′k + e′k − ρk
ωssli,k
ω0‖e′k‖2

R(π2 − δk)
[
p?k
−q?k

]
,

(8f)

ρk = −ε ln

(
exp

(
− 1

ε

)
+ exp

(
− imax‖e′k‖2
ε
√

(p?k)
2 + (q?k)

2

))
.

(8g)

III. FORMULATION OF THE POWER-FLOW PROBLEM

In this section, we present the main results of this paper,
namely: the power-flow problem formulation for power sys-
tems comprising groups of GFM inverters, GFL inverters,
and loads that are interconnected via a network of short
transmission lines.

A. The Power-flow Problem

Let fp,k(·) and fq,k(·) denote the active and reactive
power injections, respectively, at bus k ∈ B of an electrical
power network. Let gp,k(·) and gq,k(·) denote the active and
reactive power injections, respectively, at terminals of an IBR
connected to bus k ∈ I. Let h1,k(·), h2,k(·), h3,k(·), h4,k(·),
and h5,k(·) denote a set of functions that describe the inverter
terminal relations for the GFM inverter connected to bus
k ∈ Iv. Let w1,k(·), w2,k(·), and w3,k(·) denote a set of
functions that describe the inverter terminal relations for the
GFL inverter connected to bus k ∈ Ii. Let −p?k and −q?k
denote the active and reactive power demand, respectively, at
terminals of a constant power load connected to bus k ∈ N .

The power-flow problem for electrical power networks
based on IBRs is the computation of voltage magnitudes and
phase angles at each bus of the network, while taking into
account the steady-state terminal relations of the IBRs con-
nected to those buses. Accordingly, the power-flow problem
is described by the following system of equations:

− p?k = fp,k(·), −q?k = fq,k(·), ∀k ∈ N , (9a)
gp,k(·) = fp,k(·), gq,k(·) = fq,k(·), ∀k ∈ I, (9b)

0 = h1,k(·), 0 = h2,k(·), 0 = h3,k(·),
0 = h4,k(·), 0 = h5,k(·), ∀k ∈ Iv,

(9c)

0 = w1,k(·), 0 = w2,k(·), 0 = w3,k(·), ∀k ∈ Ii. (9d)



Next, we derive the expressions for the functions fp,k(·),
fq,k(·), gp,k(·), gq,k(·), h1,k(·), h2,k(·), h3,k(·), h4,k(·),
h5,k(·), w1,k(·), w2,k(·), and w3,k(·).

B. Power Injections at Network Buses

To derive expressions for the power injection at each bus of
the electrical power network, define:

Vk := ‖v′k‖2, θk := tan−1
(

e>2 v
′
k

e>1 v
′
k

)
. (10)

Also, for ` = L(k, j), define the symmetric matrices G =
[Gkj ] ∈ Rb×b and B = [Bkj ] ∈ Rb×b, with entries:

Gkk = −
n∑
j=1

Gkj , Bkk = −
n∑
j=1

Bkj ,

Gkj =
−r`

r2` + l2`
, Bkj =

l`
r2` + l2`

, if, (k, j) ∈ E ,

Gkj = 0, Bkj = 0, if, (k, j) /∈ E .

Using the steady-state model in (5) and the above definitions,
we have that the net current injection at bus k of the electrical
power network is given by:

i′k =

n∑
j=1

[
Gkj Bkj
Bkj −Gkj

] [
Vj cos θj − Vk cos θk
Vk sin θk − Vj sin θj

]
.

Accordingly, the active power injected into bus k of the
electrical network is given by:

Vke>1 R(θk)i
′
k = Vk

n∑
j=1

Vj
(
Gkj cos(θk − θj)

+Bkj sin(θk − θj)
)
,

=: fp,k

(
V1, θ1, . . . , Vn, θn

)
, (11a)

and the corresponding reactive power injection is given by

Vke>1 R(θk − π
2 )i
′
k = Vk

n∑
j=1

Vj
(
Gkj sin(θk − θj)

−Bkj cos(θk − θj)
)
,

=: fq,k

(
V1, θ1, . . . , Vn, θn

)
. (11b)

C. Power Injections at Inverter Terminals

To derive expressions for power injections at the terminals
of each IBR connected to the electrical power network, define:

Ek := ‖e′k‖2, ϑk := tan−1
(

e>2 e
′
k

e>1 e
′
k

)
. (12)

From (12), (6i), and (8e), we have that the net current injection
at the terminals of a GFL/GFM inverter is given by

i′k = σk
(
rg,kI− lg,kR(π2 )

)−1
(R(−ϑk)e1Ek − R(−θk)e1Vk).

Accordingly, the active power flow from the IBR terminals
to bus k is given by:

Vke>1 R(θk)i
′
k =

−σk
r2g,k + l2g,k

(
V 2
k rg,k

− VkEk
(
rg,k cos(ϑk − θk) + lg,k sin(ϑk − θk)

))
=:gp,k

(
Vk, Ek, θk, ϑk), (13a)

and the corresponding reactive power flow from the IBR
terminals to bus k is given by:

Vke>1 R(θk − π
2 )i
′
k =

−σk
r2g,k + l2g,k

(
V 2
k lg,k

+ VkEk
(
rg,k sin(ϑk − θk)

− lg,k cos(ϑk − θk)
))

= : gq,k
(
Vk, Ek, θk, ϑk). (13b)

D. Inverter Terminal Relations

Consider the IBR connected to bus k of an electrical power
network. The steady-state terminal relations of the IBR can be
described by the models presented in Sections II-B and II-C.

1) The Grid-forming Inverter: The steady-state relations
between the GFM inverter state variables, i.e., ωss, ρk, E◦k ,
δk, Ek, ϑk, and the variables associated with bus k, i.e., Vk
and θk are defined as follows:

0 =
(
p?k −

1

r2g,k + l2g,k

(
E2
krg,k − EkVk

(
rg,k cos(ϑk − θk)

− lg,k sin(ϑk − θk)
))) sinψk

ff,k(E◦k)
−
(
q?k

− 1

r2g,k + l2g,k

(
E2
klg,k − EkVk

(
rg,k sin(ϑk − δk)

+ lg,k cos(ϑk − δk)
))) cosψk

ff,k(E◦k)
− ωss + ω0

=: h1,k

(
ωss, E

◦
k , Vk, Ek, θk, ϑk

)
, (14a)

0 =
(
p?k −

1

r2g,k + l2g,k

(
E2
krg,k − EkVk

(
rg,k cos(ϑk − θk)

− lg,k sin(ϑk − θk)
))) cosψk

fv,k(E◦k)
+
(
q?k

− 1

r2g,k + l2g,k

(
E2
klg,k − EkVk

(
rg,k sin(ϑk − δk)

+ lg,k cos(ϑk − δk)
))) sinψk

fv,k(E◦k)
+ fe,k(E

?
k , E

◦
k)

=: h2,k

(
E◦k , Vk, Ek, θk, ϑk

)
, (14b)

0 = −Ek cosϑk − Vk(ρk − 1)kb,ke>1 A2,k(ρk)R(−θk)e1
+ E◦k

(
cos δk + (ρk − 1)kb,ke>1 A1,k(ρk)R(−δk)e1

)
=: h3,k

(
ρk, E

◦
k , δk, Vk, Ek, θk, ϑk

)
, (14c)

0 = −Ek sinϑk − Vk(ρk − 1)kb,ke>2 A2,k(ρk)R(−θk)e1
+ E◦k

(
sin δk + (ρk − 1)kb,ke>2 A1,k(ρk)R(−δk)e1

)
=: h4,k

(
ρk, E

◦
k , δk, Vk, Ek, θk, ϑk

)
, (14d)

0 = ρk + ε ln

(
exp

(
−imax ÷ ε‖A1,k(ρk)e1E

◦
k

−A2,k(ρk)R(δk − θk)e1Vk‖2
)
+ exp

(
−1
ε

))
=: h5,k

(
ρk, E

◦
k , δk, Vk, θk

)
. (14e)



2) The Grid-following Inverter: The steady-state relations
between the GFL inverter state variables, i.e., ρk, Ek, ϑk, and
the variables associated with bus k, i.e., Vk and θk are defined
as follows:

0 = −ρkp?k +
1

r2g,k + l2g,k

(
E2
krg,k − EkVk

(
rg,k cos(ϑk − θk)

− lg,k sin(ϑk − θk)
))

=: w1,k

(
ρk, Vk, Ek, θk, ϑk

)
, (15a)

0 = −ρkq?k +
1

r2g,k + l2g,k

(
E2
klg,k − EkVk

(
rg,k sin(ϑk − θk)

+ lg,k cos(ϑk − θk)
))
− ckE2

k

=: w2,k

(
ρk, Vk, Ek, θk, ϑk

)
, (15b)

0 = ρk + ε ln

(
exp

(
−1
ε

)
+ exp

(
−imaxEk

ε
√
(p?k)

2 + (q?k)
2

))
=: w3,k

(
ρk, Ek

)
. (15c)

Remark. The system of equations in (9), and the corre-
sponding definitions provided in in (11), (13), (14), and (15)
reveal that, for power networks with IBRs connected to each
bus, the power flow problem is described by a total of
2|N | + 2|I| + 5|Iv| + 3|Ii| algebraic equations. Choosing
θ1 = 0 as the reference angle for all voltage phases, we
have that the variables to be solved for in the power-flow
problem are described as follows: (1) ωss, θ2, . . . , θ|B|, and
V1, . . . , V|B|, (2) For all k ∈ Iv and k ∈ Ii, the unknowns are:
ϑk, Ek, ρk, (3) Two additional unknowns for buses indexed by
k ∈ Iv are E◦k and δk. Since the number of equations match
the number of unknowns, we can solve for the unknowns.

IV. NUMERICAL RESULTS

In this section, we present numerical results that validate the
power-flow models developed in this paper. A 3-bus network
comprising two GFM inverters and one GFL inverter, which
are interconnected via short transmission lines, is modeled
using the full-order model as well as the power-flow equations
and their supporting equations. The steady-state model is used
to compute steady-state initial conditions for both models, and
the same disturbances are implemented in both models. The
parameters for the 3-bus network are obtained from [13].

We introduce disturbances into the system via p?1 and q?1 . At
t = 0.5 s and t = 1 s, the value of p?1 is sequentially decreased
by 0.1 pu, and at t = 2 s, the value q?1 is decreased by 0.1 pu.
The evolution of the bus frequency, the steady-state frequency
from the power-flow solution, and the voltage magnitude of
each bus are depicted in Fig. 2. The results demonstrates that
after a disturbance is introduced into both models, the solution
of the steady-state model is able to track the steady-state values
of corresponding states in the full-order model.

V. CONCLUDING REMARKS & FUTURE WORK

This work developed the steady-state model and the power-
flow formulation for inverter-based power systems. Compared
to previous efforts for model reduction, our models describe
the steady-state characteristics of such networks and captures

GFLGFM dVOC GFM VSM

12 3

Fig. 1: The 3-bus network with a GFL IBR, a dVOC GFM
IBR, and a VSM GFM IBR connected to buses 1, 2, and 3,
respectively.

order model−full
flow solution−power

Fig. 2: Results of the steady-state and dynamic simulations.

the steady-state behavior of the system frequency in the
presence of disturbances. Simulation results are presented to
validate the response of the model under various disturbances.
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[3] K. Kodra, N. Zhong, and Z. Gajić, “Model order reduction of an islanded
microgrid using singular perturbations,” in Proc. of the American Control
Conference, Aug. 2016, pp. 3650–3655.

[4] O. Ajala, M. Almeida, I. Celanovic, P. W. Sauer, A. D. Domı́nguez-
Garcı́a, and D. Liberzon, “A hierarchy of models for microgrids with
grid-feeding inverters,” in Proc.of the IREP Bulk Power System Dynam-
ics and Control Symposium, Espinho, Portugal, Aug 2017.

[5] O. Ajala, A. Domı́nguez-Garcı́a, and P. Sauer, A Hierarchy of Models
for Inverter-Based Microgrids. Springer-Verlag, Berlin, 2017.

[6] P. Vorobev, P. Huang, M. A. Hosani, J. Kirtley, and K. Turitsyn, “High-
fidelity model order reduction for microgrids stability assessment,” IEEE
Trans. Power Syst., vol. 33, no. 1, pp. 874–887, Jan 2018.

[7] J. Schiffer, D. Zonetti, R. Ortega, A. M. Stankovic, T. Sezi, and J. Raisch,
“A survey on modeling of microgrids—from fundamental physics to
phasors and voltage sources,” Automatica, vol. 74, May 2015.

[8] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, Analysis and
Testing of Autonomous Operation of an Inverter-Based Microgrid,”
IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613–625, Mar. 2007.

[9] F. Dörfler and F. Bullo, “Synchronization and transient stability in
power networks and non-uniform Kuramoto oscillators,” in Proc. of the
American Control Conference, June 2010, pp. 930–937.

[10] L. Luo and S. V. Dhople, “Spatiotemporal model reduction of inverter-
based islanded microgrids,” IEEE Trans. Energy Convers., vol. 29, no. 4,
pp. 823–832, Dec. 2014.

[11] A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Sys-
tems. Wiley, Jan. 2010.

[12] O. Ajala, M. Lu, S. Dhople, B. B. Johnson, and A. Domı́nguez-Garcı́a,
“Model reduction for inverters with current limiting and dispatchable
virtual oscillator control,” IEEE Trans. Energy Convers., 2021.

[13] O. Ajala, N. Baeckeland, S. Dhople, and A. Domı́nguez-Garcı́a, “Un-
covering the kuramoto model from full-order models of grid-forming
inverter-based power networks,” in Proc. of the IEEE Conference on
Decision and Control (CDC), Dec 2021.

[14] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and
Control. McGraw-Hill, 1994.


