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Abstract— We address the problem of controlling the reactive
power setpoints of a set of distributed energy resources (DERs)
in a power distribution network so as to mitigate the impact
of variability in uncontrolled power injections associated with,
e.g., renewable-based generation. We formulate the control
design problem as a stochastic optimization problem, which we
solve online using a modified version of a projected stochastic
gradient descent (PSGD) algorithm. The proposed PSGD-
based algorithm utilizes sensitivities of changes in bus voltage
magnitudes to changes in DER reactive power setpoints; such
sensitivities are learned online via a recursive least squares
estimator (rLSE). To ensure proper operation of the rLSE,
the sequence of incremental changes in DER reactive power
setpoints needs to be persistently exciting, which is guaranteed
by a mechanism built into the controller. We analyze the
stability of the closed-loop system and showcase controller
performance via numerical simulations on the IEEE 123-bus
distribution test feeder.

I. INTRODUCTION

Currently, voltage regulation in power distribution
networks is accomplished, for the most part, through
tap-changing under-load transformers (TCULs) and
fixed/switched capacitor banks. However, while these
devices are effective in managing slow changes in voltage
(minutes to hours), they are not suitable for managing fast
voltage fluctuations (seconds to minutes) arising, e.g., from
rapid changes in renewable-based power generation. This
problem can be effectively addressed by controlling the
reactive power injected into the distribution network by
power-electronic inverter-interfaced DERs—a solution that
has been actively pursued in the last decade (see, e.g, [1],
[2] and the references therein).

In this paper, we also pursue the idea of utilizing inverter-
interfaced DERs for voltage regulation. Building on our ear-
lier work on data-driven control algorithms in [2], [3], [4], we
design a voltage regulation scheme that does not rely on an a
priori known model of the system to be controlled; instead,
the scheme utilizes data to estimate such a model online,
while simultaneosly executing a feedback control algorithm.
We demonstrate that the proposed approach is adaptive to
constantly varying system conditions and disturbances, and
is capable of utilizing the reactive power support capabilities
of inverter-based resources to effectively provide voltage
regulation at a fast time-scale (i.e., milliseconds to seconds).
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The control design problem is cast as a stochastic op-
timization problem whose goal is to determine the reactive
power setpoints of DERs so as to minimize the expectation of
bus voltage deviations from their nominal values. In order to
solve this problem, we utilize a projected stochastic gradient
descent (PGSD) algorithm (see e.g., [5]). Proper initialization
and execution of the algorithm for a single step essentially
results in a feedback controller that utilizes measured voltage
deviations to adjust reactive power setpoints of DERs. In its
basic form, the algorithm relies on knowing the sensitivities
of changes in bus voltages with respect to changes in reactive
power injections. Instead of obtaining these sensitivities
offline via a model, we design a recursive least squares
estimator (rLSE) that learns them online by using real-
time voltage measurement data and the sequence of reactive
power setpoints generated by the controller. The rLSE is
executed in parallel with the controller, and in order to
ensure proper operation of the estimator, the sequence of
incremental changes in DER reactive power setpoints needs
to be persistently exciting. To this end, we modify the basic
control algorithm to include a mechanism that ensures this.

Most of the existing literature on utilization of inverter-
interfaced DERs for voltage regulation rely on the use of
exact models of the network (see, e.g., [1] and the refer-
ences therein). However, these methodologies have practical
limitations in that, due to the limited number of sensors in
power distribution networks, the models are hard to obtain in
practice. More recently, there have been several papers that
propose the use of data-driven techniques for addressing the
voltage regulation problem in power distribution networks, as
well as in other related control and estimation problems. For
example, the authors of [3] present a data-driven framework
for coordinating the active and reactive power injections
of DERs to provide voltage regulation in radial networks.
The proposed scheme utilizes estimates of network voltage
sensitivities obtained online by fitting measurements to the
so-called LinDistFlow model; by contrast, the method we
propose here does not assume any particular model structure.
The authors of [2] propose a data-driven voltage regula-
tion approach based on the estimated topology and line
parameters of radial power distribution systems. The authors
of [4] propose a model-free control scheme for regulating
voltage, frequency, and line flows that assumes no prior
information on the system. The use of linear estimation
techniques to learn sensitivities of various power system
state variables to control inputs has also been exploited in
numerous applications in bulk power system monitoring and
control [6], [7], [8].



The framework proposed in this paper is closely related to
that presented in [9], which proposes a model-free, real-time
optimal power flow solver through feedback optimization.
Similar to the approach we adopt here, [9] proposes a data-
driven online approach to learn a model of input–output
sensitivities. The objective function of the online feedback
optimization formulated is the operational cost of the inputs,
and the inequality constraints are the operational limitations
on the inputs. The sensitivity estimate at each iteration is
computed using both the previous estimate and the current
measurements only, and a projected gradient solution method
for the optimization problem, with persistent excitation of
the control inputs performed at each iteration. By contrast,
in our work, we formulate the control problem as a stochastic
optimization problem, where the objective function is the ex-
pected value of the norm of the deviation of the outputs from
their nominal values. In addition, the sensitivity estimate in
our work is computed using all previous measurements with
less weights assigned to older measurements. Finally, the
proposed scheme in [9] does not account for the constraints
on control inputs when attempting to generate persistently
exciting inputs and does not have a built-in mechanism to
check whether or not the sequence of control inputs is indeed
persistently exciting. By contrast, our work does take these
important issues into account.

II. PROBLEM FORMULATION

Consider a power distribution network with n + 1 buses
indexed by the elements in N = {0, 1, 2, . . . , n}, where
the 0 element corresponds to the bus at which the network
is connected to an external system, e.g., a sub-transmission
grid. Assume the network has m reactive-power-capable
DERs indexed by the elements in C = {1, 2 . . . ,m}. Let
vi(t) denote the magnitude of the phasor associated with the
voltage at bus i, i ∈ N , at time t. Assume that v0(t) = V0,
where V0 is a positive constant, for all t ≥ 0, and define
v(t) :=

[
v1(t), v2(t), . . . , vn(t)

]⊤
. Also, let qi(t) denote the

reactive power injected into the network by reactive-power
capable DER i, i ∈ C = {1, 2 . . . ,m}, at time t, and define
q(t) :=

[
q1(t), q2(t), . . . , qm(t)

]⊤
.

Assume that, initially, q(t0) = q0, where q0 ∈ Rm is
given. Then, the objective is to adjust q(tk) =: qk, k ≥ 1,
via a feedback controller so as to regulate v(t) to some v∗ =[
v∗1 , v

∗
2 , . . . , v

∗
n

]⊤
, where v∗i > 0, i = 1, 2, . . . , n, denotes

some nominal value. Let {t+k }k≥1, tk < t+k < tk+1, denote
the sequence of time instants at which v(t) is measured, and
define vk := v(t+k ). Then, we have that

vk = h
(
qk, wk

)
, (1)

where wk =
[
w1,k, w2,k, . . . , wd,k

]⊤
, with wj,k :=

wj(tk), j = 1, 2, . . . , d, representing exogenous distur-
bances associated with, e.g., DER active power generation,
load active and reactive power demand, and network param-
eters.

Remark 1: In general, it is difficult to analytically charac-
terize the function h(·, ·) as this essentially entails obtaining

an analytical solution to the power flow problem, which
is defined by a set of nonlinear equations describing the
active and reactive power balance at each bus (see, e.g., [10,
pp. 323-330]). To be more specific, these equations map the
magnitudes and phase angles of the phasors associated with
bus voltages to the active and reactive power injections at
all buses; hence one would need to invert such mapping to
analytically characterize h(·, ·). Therefore, in the remainder
we will assume that h(·, ·) is not known.

Assume that values taken by wk, k ≥ 1, are of the form

wk = w◦
k + ξk, (2)

with the value taken by w◦
k known and slowly changing as k

evolves, and where ξk is not a priori known but can be
described by a random vector Ξk ∈ Rd. In the remainder, we
assume that the random vectors Ξk, k ≥ 0, are independent
and identically distributed (i.i.d.) with zero mean, i.e.,

E
[
Ξk

]
= 0, k ≥ 1, (3)

and whose covariance matrix is such that

E
[
∥Ξk∥22

]
≤ σ, (4)

where σ denotes some positive constant. Now, since the
values taken by w◦

k, k ≥ 1, are known, we can equivalently
describe the relation in (1) as follows:

vk = hk(qk, ξk), (5)

where hk(qk, ξk) := h(qk, w
◦
k + ξk). In the remainder, we

will assume q0 is such that

v0 = h(q0, w
◦
0)

= v∗, (6)

with the value taken by w◦
0 known, i.e., initially there is

no uncertainty in the value that the exogenous disturbances
takes, and the reactive powers injected by the DERs are such
that the magnitudes of all bus voltages are equal to their
nominal values.

III. MODEL-BASED FEEDBACK OPTIMIZATION

In order to determine the value of qk, k ≥ 1, consider the
following optimization problem:

minimize
φk

1

2
EΞk

[∥∥v∗ − hk

(
φk,Ξk

)∥∥2
2

]
(7a)

subject to q
k
≤ φ ≤ qk, (7b)

where EΞk
[·] denotes expectation over the distribution of

Ξk, and q
k

and qk denote the lower and upper bounds,
respectively, on the reactive power that can be injected by
DERs into the network. Then, a local minimum of (7),
which we denote by φ∗

k, can be approximately obtained as
φ∗
k ≈ limr→∞ φr

k, with the evolution of φr
k, governed by

φr+1
k =

[
φr
k+γk

(
∂hk(φ, ξ)

∂φ

∣∣∣∣∣
φ=φr

k, ξ=ξrk

)⊤

×
(
v∗ − hk

(
φr
k, ξ

r
k

))]qk
q
k

, r ≥ 0, (8)



where γk is a positive constant, and ξrk, r ≥ 0, denote
samples from the distribution of Ξk. The algorithm in (8)
is essentially a PSGD algorithm for the problem in (7) (see,
e.g., [5] and the references therein).

We initialize the PSGD algorithm in (8) as follows

φ0
k = qk−1,

ξ0k = ξk−1, (9)

where ξk−1 denotes the realized value of Ξk−1, and instead
of running it to completion, we will only execute one
iteration and set qk = φ1

k. Then, it follows that the evolution
of qk is governed by

qk =

[
qk−1+γk

(
∂hk(φ, ξ)

∂φ

∣∣∣∣∣
φ=qk−1, ξ=ξk−1

)⊤

×
(
v∗ − hk

(
qk−1, ξk−1

))]qk
q
k

. (10)

The one-step PSGD-based algorithm proposed in (10) for
solving the problem in (7) is a special case of the setting
in [11], which proposes a framework to sequentially solve
stochastic minimization problems with slowly varying cost
functions that are convex.

Remark 2: We assume for subsequent developments that
the problem (7) changes slowly with k, while the one-step
PSGD-based algorithm is executed, which entails assuming
that the hk(·, ·)’s, q

k
and qk vary slowly with k. However,

the algorithm will also work in the presence of large but
infrequent variations due to, e.g., weather changes, as long
as there are sufficiently long time intervals during which the
algorithm is able to converge.

Note that by using ξk−1 to initialize the PSGD-based
algorithm, we are using a sample from Ξk−1; however, recall
that we have assumed that the Ξl’s are i.i.d., so we are
effectively sampling from the distribution of Ξk. Then, since
we have assumed that hk(·, ·) changes slowly with k, we can
make the following approximations:

hk

(
qk−1, ξk−1

)
≈ hk−1

(
qk−1, ξk−1

)
= vk−1, (11)

∂hk(φ, ξ)

∂φ

∣∣∣∣∣
φ=qk−1, ξ=ξk−1

≈ ∂hk−1(φ, ξ)

∂φ

∣∣∣∣∣
φ=qk−1, ξ=ξk−1

.

(12)

Thus, if we assume measurements of vk, k ≥ 1, are
available, we can update the value of qk as follows:

qk =
[
qk−1 + γkS

⊤
k−1

(
v∗ − vk−1

)]qk
q
k

, (13)

where

Sk−1 =
∂hk−1(φ, ξ)

∂φ

∣∣∣∣∣
φ=qk−1, ξ=ξk−1

∈ Rn×m. (14)

Note that in order to execute (13), we would need to
compute ∂hk−1(φ, ξ)/∂φ for φ = qk−1 and ξ = ξk−1. This

computation can be done by manipulating the power flow
Jacobian without necessarily solving the power flow equa-
tions; however, it requires knowing the value of ξk−1, which
we have assumed it is not a priori known. To circumvent
this issue, instead of using Sk−1 in (13), we will use an
estimate obtained using measurements of

{
ql, vl

}k−1

l=0
; the

construction of such an estimate is detailed next.

IV. ONLINE MATRIX SENSITIVITY ESTIMATOR

Define ∆vk := vk − vk−1, ∆qk := qk − qk−1 and ∆ξk :=
ξk − ξk−1; then, by using (5), we have that

vk−1 +∆vk = hk

(
qk−1 +∆qk, ξk−1 +∆ξk

)
, (15)

Now, by expanding the right-hand side of (15) about(
qk−1, ξk−1

)
using the Taylor series expansion, and using

the approximation in (12), it follows that

∆vk = Sk−1∆qk + ϵk, (16)

where ϵk represents higher order terms in ∆qk, all the terms
in ∆ξk, and the error associated with the use of (12). Then,
by assuming that ϵk is much smaller that Sk−1∆qk, we have
that

∆vk ≈ Sk−1∆qk. (17)

Now let Ŝ∗
k denote an estimate of Sk, which we can obtain

using the method of least squares as follows:

Ŝ∗
k = argmin

S
ℓ(S), (18)

where

ℓ(S) :=

k∑
l=1

λk−l
∥∥∆vl − S∆ql

∥∥2
2
,

with λ ∈ (0, 1) denoting the forgetting factor that allows
the estimator to assign exponentially less weight to older
measurements and adapt to changes in operating conditions.
The solution to the least-squares problem (18) can be derived
as follows. We first compute the gradient of the loss function
ℓ(S) in (18), which yields the following expression:

∇ℓ(S) = −2

k∑
l=1

λk−l
(
∆vl − S∆ql

)
∆q⊤l . (19)

Then, we equate the gradient (19) to zero and obtain

k∑
l=1

λk−l∆vl∆q⊤l = S

(
k∑

l=1

λk−l∆ql∆q⊤l

)
. (20)

Now in order to solve for S in (20), we need to invert the
matrix that multiplies S. Since this matrix is the sum of k
(m×m)-dimensional rank-one matrices, sufficient conditions
for ensuring its invertibility are that: i) k ≥ m, and ii) the
sequence {∆ql}kl=1 is persistently exciting.1 Assuming these

1A discrete-time signal x[t], t = 1, 2, . . . , is persistently exciting if, for
every k, there exist an integer l and constants ϱ1, ϱ2 > 0 such that the
matrices ϱ1I −

∑k+l
t=k x[t]x[t]⊤ and

∑k+l
t=k x[t]x[t]⊤ − ϱ2I are positive

definite [12].



two conditions are satisfied, we can now solve for S in (20)
and obtain Ŝ∗

k , k ≥ m:

Ŝ∗
k =

(
k∑

l=1

λk−l∆vl∆q⊤l

)(
k∑

l=1

λk−l∆ql∆q⊤l

)−1

. (21)

The issue of ensuring that the sequence {∆ql}kl=1 is per-
sistently exciting is addressed in the next section. However,
even if this can be addressed satisfactorily, the estimate Ŝ∗

k

obtained using (21) is only valid for k ≥ m; this means that
in practice we would have to wait for m steps before we can
obtain our first estimate. To address this, we use an algorithm
that will recursively generate a sequence

{
Ŝk

}
k≥1

that can
be shown to converge to Ŝ∗

k for k large enough. The update
rules for this recursive algorithm are as follows:

Ŝk = Ŝk−1 +
(
∆vk − Ŝk−1∆qk

)
∆q⊤k Fk,

Fk = λ−1Fk−1

− λ−2

1 + λ−1∆q⊤k Fk−1∆qk
Fk−1∆qk∆q⊤k Fk−1, (22)

with

Ŝ0 =
∂h(φ,w)

∂φ

∣∣∣∣∣
φ=q0, w=w◦

0

,

F0 = Im, (23)

where Im denotes the (m×m)-dimensional identity matrix.
The algorithm is obtained by using the matrix inversion
lemma to recursively invert the matrix

∑k
l=1 λ

k−l∆ql∆q⊤l ;
see [13] for the derivation.

Remark 3: Note that in order to initialize the algorithm
in (22), we need to compute ∂h(φ,w)/∂φ for φ = q0 and
w = w◦

0 . Unlike the computation of Sk−1 in (14), in this
case, we can indeed compute Ŝ0 by manipulating the power
flow Jacobian without necessarily solving the power flow
equations because q0 and w◦

0 are known. Furthermore, the
initialization of Ŝ0 as in (23) is not crucial as we will see in
the numerical simulation results presented in Section VII.

Remark 4: Note that if the algorithm in (22) were to be
executed for k > m, with Ŝm = Ŝ∗

m obtained using (21) for
k = m, and

Fm =

(
m∑
l=1

λk−l∆ql∆q⊤l

)−1

,

the sequence generated by the algorithm would be
{
Ŝ∗
l

}
l≥m

,
i.e., for each k > m, the algorithm would generate the exact
solution to (20) as given in (21).

V. ONLINE FEEDBACK OPTIMIZATION

Now, on the one hand, by replacing Sk−1 by Ŝk−1 in (13),
we obtain that

qk =
[
qk−1 + γkŜ

⊤
k−1

(
v∗ − vk−1

)]qk
q
k

, k ≥ 1. (24)

On the other hand, by inspecting (21), one can see that an
estimate of Ŝk can be computed if the matrix

k∑
l=1

λk−l∆ql∆q⊤l

is invertible; this can be ensured as mentioned earlier if the
sequence

{
∆ql

}k
l=1

is persistently exciting. However, it is
not clear a priori that (24) will generate such persistently
exciting sequence. To address this issue, we modify (24)
to add a mechanism to ensure that indeed the sequence{
∆ql

}k
l=1

is persistently exciting. First, by assuming that
qk−1 ∈ [q

k−1
, qk−1], we can rewrite (24) as follows:

qk = qk−1 +
[
γkŜ

⊤
k−1

(
v∗ − vk−1

)]∆qk

∆q
k

, k ≥ 1, (25)

where ∆q
k

= q
k
− qk−1 and ∆qk = qk − qk−1. Then,

following the ideas in [4], we will make three modifications
to (25) as follows:
M1. The term inside the projection term on the right hand

side of (25) is modified as follows:

γkŜ
⊤
k−1

(
∆v∗k + czk

)
, (26)

where c is some constant, ∆v∗k = v∗ − vk−1, and

zk =

{
0, if {∆v∗l }kl=1 is persistently exciting,
sampled from (−∆v∗k)U(0, a1), otherwise,

(27)
with a1 ∈ (0, 1) and U(x, y) denoting the continuous
uniform distribution over the interval (x, y).

M2. The incremental lower and upper capacity limit in (25)
are respectively set to

q
k
+ η

k
,

qk − ηk, (28)

where η
k

is sampled from U(0, a2|∆q
k
|) and ηk is

sampled from U(0, a2|∆qk|), with a2 ∈ (0, 1).
M3. By using the two modifications above, define the

following quantity:

∆̃qk =
[
γkŜ

⊤
k−1

(
∆v∗k + czk

)]∆qk−ηk

∆q
k
+η

k

. (29)

Let Null
(
Ŝk

)
denote the null space of the matrix Ŝk.

Then, if the sequence
{{

∆ql
}k−1

l=1
, ∆̃qk

}
is persis-

tently exciting, we update the value of qk as follows:

qk = qk−1 + ∆̃qk, k ≥ 1, (30)

otherwise we update its value as follows:

qk = qk−1 + ∆̃qk + γkαkνk, k ≥ 1, (31)

with αk sampled from U(−bk, bk), where bk ≥ 0 is
arbitrarily chosen so that

∆q
k
≤ ∆̃qk + γkbkνk ≤ ∆qk, (32)

∆q
k
≤ ∆̃qk − γkαkνk ≤ ∆qk, (33)



for some arbitrarily chosen νk ∈ Null
(
Ŝk

)
; this en-

sures that q
k
≤ qk ≤ qk.

The rationale behind the modifications above is to in-
troduce excitation across the entire space in which the
∆qk’s take values. To see this, first consider the case when
the capacity constraints are not active at instant k, i.e.,
∆̃qk = γkŜ

⊤
k−1

(
∆v∗k + czk

)
. Let Row

(
Ŝk

)
denote the

row space of Ŝk ∈ Rn×m. Then, the idea behind adding
the term czk to ∆v∗k in Modification M1 is to introduce
excitation in the subspace spanned by the columns of Ŝ⊤

k ,

i.e., Row
(
Ŝk

)
, whereas the idea behind adding the term

γkbkνk in Modification M3 is to introduce excitation in
Null

(
Ŝk

)
, which is the orthogonal complement of Row

(
Ŝk

)
.

Then, since for any x ∈ Rm we have that x = u + v,
with u ∈ Row

(
Ŝk

)
and v ∈ Null

(
Ŝk

)
, this mechanism

allows us to introduce excitation in separate parts of the
whole space Rm as needed. The idea behind modifying the
incremental capacity limits as described in Modification M2
is as follows. If the capacity constraints are active at instant
k, by modifying the incremental capacity limits as in (28),
we are leaving headroom to add the term γkbkνk if needed,
while still ensuring that the constraints in (32) – (33) imposed
by the actual incremental capacity limits are satisfied.

VI. CONVERGENCE ANALYSIS

Next, we provide the conditions under which the proposed
online feedback optimization controller in (29) – (33) con-
verges. To this end, we first need to rewrite the model in
(1) as follows. Define δvk = vk − v∗, δqk = qk − q0, and
δwk = wk −w◦

0 (note that wk −w◦
0 = w◦

k −w◦
0 + ξk); then,

we have that

v∗ + δvk = h(q0 + δqk, w
◦
0 + δwk), k ≥ 0. (34)

Now by using the Taylor series expansion to expand the right
hand side of (34) about (q0, w◦

0), we obtain that

vk = Sφqk + Swξk + µk + ηk, (35)

where

Sφ =
∂h(φ,w)

∂φ

∣∣∣∣∣
φ=q0, w=w◦

0

Sw =
∂h(φ,w)

∂w

∣∣∣∣∣
φ=q0, w=w◦

0

µk = v∗ − Sφq0 + Sw

(
w◦

k − w◦
0

)
, (36)

with ηk representing higher-order terms in δqk and δwk.
The next result, the proof of which can be found in

[13], shows that the sequence {qk}k≥1 generated by (27)
– (33) converges almost surely to a solution of the optimiza-
tion problem in (7) provided that the sensitivity estimates,{
Ŝk

}
k≥1

, are unbiased. In doing so, we set c = 0 in
(29). Also, we assume that (i) µk = µ, k ≥ 0, where µ
is some constant, which is consistent with the assumption
we made earlier that w◦

k slowly changes with k; and (ii)
ηk = 0, k ≥ 0, which is reasonable since this term captures
the higher-order terms of the Taylor series expansion of

h(q, w) about (q0, w
◦
0). We plan to address these issues in

future work.
Proposition 1: Consider the online feedback optimization

controller in (27) – (33) with c = 0, and where the sequence{
Ŝk

}
k≥0

are the unbiased estimates of the sensitivity matrix

Sφ, namely, E
[
Ŝk −Sφ | Fk

]
= 0, with Fk denoting the ac-

cumulated collection of states up to instant k,
{
(vl, ql)

}k
l=0

,

and E
[∥∥Ŝk − Sφ

∥∥2] ≤ σφ, with σφ denoting some positive
constant. Let X ∗

k denote the set of optimal solutions of (7).
We assume that the following conditions hold:

(a) q
k

and qk are constant, µk is constant, E
[
ηk
]
= 0 and

E
[
∥ηk∥22

]
≤ σ.

(b) γk is a diminishing step size, namely,
∞∑
k=1

γk = ∞,

∞∑
k=1

γ2
k < ∞. (37)

Then, the sequence {qk}k≥1 converges almost surely to some
point in X ∗

k .
The next result, the proof of which can be found in [13],

provides the cost error bound at the time instant when the
sequence {∆qk}k≥1 is no longer persistently exciting. This
indeed will be the case if the rLSE in (22) is used to generate
the sequence {Ŝk}k≥1 as Ŝk will cease to be an unbiased
estimate of the sensitivity matrix, Sφ, as k → ∞.

Proposition 2: Suppose we have for some α and T > 0
that

T∑
l=1

λT−l∆ql∆q⊤l < αI. (38)

Suppose that qT > q
T
+ η

T
and qT < qT − ηT . Then, the

following relation holds for any q∗ ∈ X ∗
T :

f(qT )− f(q∗) < (qT − q
T
)

√
mα+B

γT
, (39)

where B is an upper bound for ∥ζl∥, l ≥ 1.
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Fig. 1: IEEE 123-bus distribution test feeder.
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Fig. 2: Trajectories of active and reactive power at bus 1.

VII. NUMERICAL RESULTS

Here, we present numerical simulation results illustrating
the effectiveness of our proposed online feedback optimiza-
tion controller for voltage regulation in power distribution
systems. To this end, we employ the test system depicted
in Fig. 1, which is a modified version of the three-phase
balanced IEEE 123-bus distribution test feeder presented in
[3], [14], with reactive-power-capable DERs added to the
network at the following buses: 19, 26, 38, 49, 56, 64, 78, 89,
and 99. At other buses in the distribution network, random
perturbations in the active and reactive power demand are
introduced every 100 milliseconds (see Fig. 2 for an illus-
tration of the active and reactive power demand at bus 1).

In this case we have that n = 122 and m = 9. Thus, we
set F0 = I9 and Ŝ0 to the matrix that results from removing
the last 113 columns of the matrix I122. Additionally, all
the components of q

k
and qk are set to −0.5 pu and 0.5 pu,

respectively, for all k. We also set a1 = 0.8, a2 = 0.8,
λ = 0.995 and γk = 0.95, k ∈ {1, . . . , 100}, γk = 0.1,
k ∈ {101, . . . , 400}. Figure 3 show the trajectory followed
by bus 1 voltage magnitude under i) no control action, i.e.,
qk = q0 for all k ≥ 1, and ii) the action of the proposed
controller for c = 0.5. All our simulations demonstrate that
the proposed controller is effective at regulating bus voltage
magnitudes (see [13] for additional numerical results).

VIII. CONCLUDING REMARKS

In this paper we have proposed a controller for voltage
regulation in power distribution networks using reactive-
power capable DERs. The proposed controller is based on a
PSGD algorithm for solving online a sequence of optimiza-
tion problems, each of which capturing the objectives and
constraints of the voltage regulation problem at a particular
time instant. In order to execute the controller, it is necessary
to know the sensitivities of changes in bus voltage magni-
tudes with respect to changes in reactive power injections;
we assume there are not a priori known and use a rLSE to
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Fig. 3: Trajectory of voltage magnitude at bus 1 for c = 0.5.

estimate them. Under certain simplifying assumptions, we
showed that the the sequence of DER setpoints generated
by the controller converges almost surely to a solution of
said optimization problem when the estimates used by the
controller are unbiased. In this regard, while the estimates
generated by the rLSE will initially be unbiased, in the limit
this will no longer be the case; however, the simulation
results show that the controller still performs satisfactorily.
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