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Abstract— We consider the problem of average consen-
sus in a network system under a fixed, undirected commu-
nication topology, when there are malicious nodes present
that may try to influence the average calculation. In the
setting considered, the average consensus is performed by
the nodes in a distributed fashion using a linear iterative
algorithm. We assume malicious nodes can manipulate, in
an arbitrary manner, the value of their state in the afore-
mentioned algorithm; the problem is then to check whether
or not each node is correctly performing the updates of its
state. To address this problem, we propose a distributed
algorithm whereby each node is in charge of checking
the updates performed by its neighboring nodes based
on information that it receives from them and also from
the neighbors of its neighbors. The algorithm leverages
ideas from non-concurrent error detection schemes and its
main advantage is that information from two-hop neighbors
is only needed infrequently—a relaxation that significantly
reduces the communication overhead associated with the
requirement to make such information available.

Index Terms— Agents-based systems, Distributed con-
trol, Fault detection, Network analysis and control

I. INTRODUCTION AND MOTIVATION

WE consider network systems consisting of a set of
nodes that can share information with neighboring

nodes via connection links, forming an interconnection topol-
ogy, which can be described by a graph. In such systems, it
is often necessary for all or some of the nodes to calculate
a function of certain parameters, referred to as initial val-
ues, held locally by the nodes [1], [2]. For example, when
all nodes calculate the average of these initial values, they
are said to reach average consensus. Due to its usage in
numerous distributed control, computing, and communication
applications, distributed algorithms for average consensus have
been researched extensively (see, e.g., [1]–[5]). An important
class of such algorithms rely on a linear iteration whose
convergence is asymptotic (see, e.g., [1], [2], [4] and the
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references therein). This paper focuses on the problem of
detecting/identifying malicious nodes in a network system
during the execution of such average consensus algorithms. In
our setting, malicious nodes are loosely defined as nodes that
are performing incorrect updates in an attempt to manipulate
the outcome of the average consensus algorithm.

To address the problem, we propose a linear iterative scheme
that allows each node of a network system to check, in a
distributed fashion, whether or not its neighboring nodes have
performed their updates correctly. The proposed distributed
scheme, which is based on the centralized non-concurrent error
detection and identification scheme in [6], relies on additional
(internal) state variables that are maintained at each node for
monitoring purposes. The update performed by each node of
said variables uses information from two-hop neighbors only
periodically (instead of requiring such information at each
iteration). Note that, if such two-hop information is available
at each iteration, then the checker node can essentially emulate
the computations that each of its neighboring nodes under
check is supposed to perform, and verify (separately, for
each of its neighbors) whether its updates are correct; this
is essentially the approach taken in [7]–[9].

The main contributions of the paper are as follows. In
comparison with [6], which focused exclusively in sparse
errors, i.e., transient faults injected by some nodes at specific
time steps, the errors injected by malicious nodes in our
setting are not necessarily sparse, i.e., a malicious node may
be introducing errors in its value at every iteration. Then,
unlike the algorithm proposed in [6], our algorithm is able
to detect such non-sparse errors as long as they accumulate
over time to a nonzero value between the periodic checks
performed by the algorithm. By contrast with the schemes
proposed in [7]–[9], the non-concurrent checking scheme we
propose in this paper does not require each node to maintain
a different monitor for each of its neighbors and, perhaps
more importantly, it requires information from the two-hop
neighbors only once every few iterations; thus, significantly
reducing communication requirements.

In the paper we will not elaborate on ways to handle
malicious nodes once they are declared as such (or when
they try to incriminate other nodes by providing incorrect
information or assessments) because one can proceed using
a variety of existing techniques. For example, one can rely on
a separate mechanism to inform non-malicious nodes about
which node(s) has (have) been declared malicious, and non-



malicious nodes can continue their iteration while ignoring
the malicious nodes (see, [7]–[10]). In addition, one could
use the approach in [11] to ensure that nodes completely
remove the effects of malicious nodes on the computation
of the average. Alternatively, one could use the approach
proposed in [12] to limit the effect of malicious nodes on the
computation; however, such approach would only guarantee
reaching consensus to a value between the minimum and
maximum value of non-malicious nodes.

II. MATHEMATICAL BACKGROUND AND NOTATION

A. Graph-Theoretic Notions and Communication Model

A directed graph (digraph) of order N (N ≥ 2), is defined
as G = (V, E), where V = {v1, v2, . . . , vN} is the set of
nodes and E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of
edges. A directed edge from node vi to node vj is denoted by
(vj , vi) ∈ E , and indicates that node vi can send information to
node vj . A digraph is called undirected, denoted Gu = (V, E),
if (vj , vi) ∈ E implies that (vi, vj) ∈ E . In such case, the set of
nodes that can send/receive information directly to/from node
vj , which we denote by Nj , is referred to as the neighborhood
of vj , i.e., Nj = {vi ∈ V | (vj , vi) ∈ E} = {vl ∈
V | (vl, vj) ∈ E}. Each element of Nj is referred to as a
neighbor of vj and the cardinality of Nj , which we denote by
Dj , is referred to as the degree of node vj . We say that Gu is
connected if for each pair of nodes vj , vi ∈ V , vj 6= vi, there
exists a path from vi to vj , i.e., we can find a sequence of
nodes vi =: vl0 , vl1 , . . . , vlt := vj such that (vlτ+1

, vlτ ) (thus,
necessarily (vlτ , vlτ+1

)) belongs in E for τ = 0, 1, . . . , t− 1.

B. Distributed Average Consensus in Undirected Graphs

Consider a network system, captured by an undirected graph
Gu = (V, E), in which each node vj ∈ V has an initial value
Vj . Average consensus aims to have all the nodes calculate the
average of their initial values, denoted by V =

∑N
`=1 V`
N . The

algorithm we consider in this section is iterative. Specifically,
each node vj maintains a scalar state variable xj [k] and
updates it at each iteration k as follows:

xj [k + 1] = pjjxj [k] +
∑
vi∈Nj

pjixi[k] , (1)

where xj [0] = Vj , vj ∈ V , and the pji’s are constant weights.
If we let x[k] = [x1[k], x2[k], . . . , xN [k]]T, then the iteration
in (1) can be written in matrix form as

x[k + 1] = Px[k] , x[0] = [V1, V2, . . . , VN ]T, (2)

where P = [pji] is the weight matrix with the constraint that
the entry pji at its jth row and ith column satisfies pji = 0
if vi /∈ Nj ∪ {vj}. The nodes are said to reach asymptotic
average consensus if limk→∞ xj [k] = V for all vj ∈ V .

As stated in [4], [13], the necessary and sufficient conditions
for the iteration in (2) to asymptotically reach average consen-
sus are: (i) P has a simple eigenvalue at 1, with left eigenvector
1TN and right eigenvector 1N (where 1N denotes the all ones
column vector with N entries), and (ii) all other eigenvalues
of P have magnitude strictly less than 1. If one focuses on

nonnegative weights, these conditions are equivalent to P
being a primitive doubly stochastic matrix. In the case of an
undirected graph, there are very simple ways for the nodes to
choose the weights in a distributed manner so that P forms a
primitive doubly stochastic matrix [2]. For example, assuming
the nodes know the total number of nodes N or an upper bound
N ′ ≥ N , each node vj sets the weights on all of its incoming
links to be pji = 1

N ′ for all vi ∈ Nj and pjj = 1 − Dj
N ′ for

i = j (zero otherwise). It is easy to verify that P will be a
symmetric doubly stochastic matrix; P will be primitive as
long as Gu is connected.

III. NON-CONCURRENT CHECKING FOR IDENTIFYING
FAULTY/MALICIOUS NODES

In this section, we propose a scheme for non-concurrent
error checking in the distributed average consensus algorithm
in (1). The idea is based on having each node vj check for
errors introduced by other (faulty or malicious) nodes in its
neighborhood Nj . To this end, node vj needs to maintain some
additional (internal) state variables, which it updates based on
information that it receives directly from these nodes at each
iteration, as well as information that it receives periodically,
namely once every K iterations, from its two-hop neighbors,
i.e., the neighbors of its neighbors. Node vj also needs to
maintain one additional variable to send to all of its two-hop
neighbors every K iterations so that these nodes can perform
their checks on their neighbors.

Definition 1: A node vj that participates in the average
consensus computation in (1) is called malicious if during
at least one iteration k, the update of its value xj [k + 1]
is incorrect, i.e., for some iteration k, we have xj [k + 1] =
pjjxj [k] +

∑
vi∈Nj pjixi[k] + ej [k] for a nonzero ej [k].

A. Model of Subgraph to be Checked by Node vj

In the remainder we assume the following holds.
Assumption 1. Consider a connected undirected graph Gu =
(V, E) where nodes are executing a linear update of the form
in (1) to reach average consensus. Each node vj is aware of
the local topology around it up to two hops, i.e., it is aware of
its neighbors and the neighbors of its neighbors (i.e., the set
N (2)
j := Nj ∪ (∪vi∈NjNi)), as well as their interconnections

and weights used by them in the update in (1) (i.e., the set of
weights {pli | vl, vi ∈ N (2)

j ∪ {vj}).
Assumption 2. Each node vj is capable of two types of trans-
missions, namely, (i) broadcasting messages that are received
by all of its neighbors Nj , and (ii) two-hop broadcasting
messages that are received by all of its neighbors and all
the neighbors of its neighbors (i.e., all nodes in its two-hop
neighborhood N (2)

j ). Furthermore, we assume that both types
of transmissions are associated with a unique node ID that
allows receiving nodes to identify the sending node.

Remark 1: Messages to two-hop neighbors can be sent in
various ways, e.g., by transmitting at a higher power. This is
likely to be more expensive and undesirable and is one of the
reasons we propose a scheme that uses such transmissions less
frequently (once every K iterations). The ID of the node that
sends a message is needed to be able to identify the correct



weighting factor in the calculations and to properly declare
which nodes are malicious.

We now provide a model describing the part of the con-
sensus algorithm in (1) to be checked from errors by each
node. For ease of notation and without loss of generality, we
describe the model from the point of view of node v1, which
it is assumed to have n− 1 neighbors, whose labels are such
that N1 = {v2, v3, ..., vn}. In addition, we assume that v1
has m ≥ 1 two-hop neighbors, whose labels are such that
N (2)

1 \ (N1 ∪ {v1}) = {vn+1, vn+2, ..., vn+m}. [Since Gu is
strongly connected under Assumption 1, if m = 0, it follows
that node v1 can directly communicate with all nodes which
eases its task.]

With the above notation at hand, the first n entries of vector
x[k] in the iteration in (2) can be written as

q[k + 1] = Aq[k] +Bu[k] , (3)

where q[k] = [x1[k], x2[k], ..., xn[k]]
T is an n-dimensional

vector, u[k] = [xn+1[k], xn+2[k], ..., xn+m[k]]T is an m-
dimensional vector (with ui[k] = xn+i[k]), A is an n × n
matrix with entries A(j, i) = P (j, i) for 1 ≤ i, j ≤ n, and
B is an n ×m matrix with entries B(j, i) = P (j, n + i) for
1 ≤ j ≤ n and 1 ≤ i ≤ m. Effectively, the nodes in the
set N1 ∪ {v1} form a subnetwork and all other nodes that
influence one or more nodes in this subnetwork (i.e., nodes in
the set N (2)

1 \ (N1 ∪ {v1}) are treated as exogenous inputs to
this subnetwork. Note that the first row of matrix B is zero
since the update of x1[k+1] only depends on the x variables
of neighbors of node v1 and node v1 itself.

Next, we introduce the non-concurrent error detection
scheme to be used by node v1 to detect errors in (3) for the
following two cases: i) two-hop information is received at each
iteration k of the execution of (1), ii) two-hop information is
received every K > 1 iterations.

B. Two-Hop Information Received at Each Iteration

In order to protect against additive errors that corrupt the
value of q[k], k ≥ 0, we use the approach in [6] and construct
a redundant version of the system in (3) of the form

r[k + 1] = Ar[k] + Bu[k] , (4)

where r[k] is an (n+2d)-dimensional (redundant) state vector,
and A and B are real matrices of appropriate dimensions to be
chosen (d is a positive integer parameter that determines the
number of errors that can be detected and identified, and will
be discussed later). The system in (4) is designed so that it
allows one to recover q[k] from r[k] (via some linear decoding
mapping L to be determined), and to perform non-concurrent
error detection and identification.

Consider that the redundant system operates in the interval
[0,K − 1] (more generally, in any K-length window where
K is a design parameter) and that during its operation within
this interval, errors may occur. More specifically, an error e[k]
that occurs at time step k corrupts the state of the redundant
system at instant k + 1 as

r′[k + 1] = Ar′[k] + Bu[k] + e[k] ,

where r′[k] is used to distinguish the state of the redundant
system at instant k in the presence of errors from the state at
instant k, r[k], that the system would be at in the absence of
errors (note that r[k], k = 0, 1, 2, ...,K − 1, is generated by
(4) under no errors in the time window [0,K − 1]). It is not
hard to verify that

r′[K] = r[K] +

K−1∑
t=0

AK−1−te[t], (5)

where r[K] is the state the system would be in at the end
of the time window if there were no errors, and e[t], t =
0, 1, ...,K − 1, are (n+ 2d)-dimensional error vectors.

In order to design our error detection scheme, we leverage
the following particular construction of A and B from [6]:

A =

[
A 0

CA−DC D

]
, B =

[
B
CB

]
, (6)

where C and D are real matrices of appropriate dimensions
to be chosen. Note that with the above construction and in
the absence of errors, we have that q[k] = Lr[k], where L is
an n × (n + 2d) matrix of the form L = [In 0], where In is
the n×n identity matrix. Furthermore, one can use induction

to show that, as long as r[0] =
[

q[0]
Cq[0]

]
, the state r[t] will

satisfy r[t] =
[

q[t]
Cq[t]

]
for all t, regardless of the values of

the input vector u[t]. This means that in the absence of errors,
Qr[t] = 0 for all t, where Q := [−C I2d] is referred to as
the parity check matrix. This also implies that if the syndrome
p[K] := Qr′[K] (which can be readily calculated at the end
of the K-length interval) is nonzero, then one or more errors
are detected; in fact, under proper choice of C,D, analysis of
p[K] can also lead to error identification [6].

Choice of Design Matrices C and D: In [6], the specific
choices for C and D aimed to identify at most d′ (d′ ≤ d)
nonzero entries in the ((n+ 2d)K)-dimensional vector

e = [eT [0], eT [1], ..., eT [K − 1]]T , (7)

which captures all errors that have been injected during the
K-length interval of the redundant system operation. In other
words, [6] assumes that the vector e is sparse with d′ nonzero
entries (nonzero entry e(i`+k`(n+2d)) = ε` for 1 ≤ ` ≤ d′

captures an additive error of value ε` that corrupts the i`th
state variable of r′[k] at iteration K − 1− k`). Note that i` is
an index between 1 and n + 2d, ε` is any real number, and
k` is an integer between 0 and K − 1. The choices for C and
D were made in [6] to facilitate non-concurrent detection and
identification of such sparse errors.

Here, we are interested in detecting and identifying errors
that are injected by malicious nodes. Since a malicious node
can inject an error at each time step of its operation, the error
vector e in (7) is not necessarily sparse. In particular, if node
vi, vi ∈ N1, is malicious then all of e`, ` = i+ k(n+ 2d)
for k = 0, 1, . . . ,K−1, can be nonzero. Towards this purpose,
we set D = I2d in (6). With this choice, we can use induction
to establish that, for k = 1, 2, ..., it holds

Ak =

[
Ak 0

CAk − C I2d

]
.



Given the parity check matrix Q is of the form Q =
[−C I2d], one can also establish that QAk = Q for all
k = 0, 1, 2, .... Since Qr[K] = 0, by using (5), we have that

p[K] = Qr′[K] = Q

K−1∑
t=0

AK−1−te[t] = Q

K−1∑
t=0

e[t] . (8)

Let ei[t], i = 2, 3, ..., n, be the scalar additive error intro-
duced by node vi at iteration t. Note that ei[t] is zero if no
error is introduced by neighboring node vi at iteration t. As
we are describing checking from the point of view of node
v1, the error introduced by node v1 can be safely assumed to
be zero, i.e., for all t = 0, 1, ..,K − 1, we have e1[t] = 0
and en+j [t] = 0 for j = 1, 2, ...,m (recall that the bottom
2d variables are computed at node v1). If we use εi[K] =∑K−1
t=0 ei[t] to denote the total error introduced by node vi,

we can simplify (8) to p[K] = [−C I2d]ε[K], with

ε[K] =

0, ε2[K], ...εn[K], 0, 0, ..., 0︸ ︷︷ ︸
2d zeros

T . (9)

If we have at most d′ nonzero εi[K]’s, the p[K] will be a
linear combination of d′ columns of matrix −C. Therefore,
rank conditions on the columns of C determine our ability to
detect and identify malicious nodes based on the parity check
p[K]. The following lemma summarizes the benefits of one
such set of rank conditions.

Lemma 1: Suppose we build the monitor in (4)–(6) with
matrix C having the property that any 2d columns of it are
linearly independent. If each malicious node vi is associated
with a nonzero εi[K] at time instant K in (9), then we are
guaranteed (i) detection of the presence of up to 2d malicious
nodes, or (ii) identification of up to d malicious nodes.

Proof: The proof of (i) is by contradiction. If 2d (or less)
malicious nodes, say nodes i1, i2, ..., i2d that generate nonzero
errors εi1 [K], εi2 [K], ..., εi2d [K], go undetected, the syndrome
p[K] satisfies p[K] =

∑2d
l=1 C(:, il)εil [K] = 0, where C(:, il)

denotes the ilth column of C. However, this contradicts the
assumption that any 2d columns of C are linearly independent.

The proof of (ii) is also by contadiction. Suppose that
two different sets of d columns produce the same syndrome,
i.e.,

∑d
l=1 C(:, il)εil [K] =

∑d
l=1 C(:, jl)εjl [K] where il and

εil [K] (for l = 1, 2, ..., d) correspond to one set of malicious
nodes and jl and εjl [K] (for l = 1, 2, ..., d) correspond to the
other set of malicious nodes. Then,

d∑
l=1

C(:, il)εil [K]−
d∑
l=1

C(:, jl)εjl [K] = 0

is a linear combination that evaluates to zero and involves at
most 2d columns (perhaps less if some of them are duplicates
and their coefficients cancel out). Thus, we have reached a
contradiction.

Notice that if −C is chosen to be a Vandermonde matrix

V (y1, y2, ..., yn) =


y1 y2 ... yn
y21 y22 ... y2n
...

...
. . .

...
y2d−11 y2d−12 ... y2d−1n

y2d1 y2d2 ... y2dn

 (10)

with yi 6= 0 for 1 ≤ i ≤ n and yi 6= yj for 1 ≤ i < j ≤ n, then
any set of 2d columns of it will be linearly independent. In
fact, in such case one can use the techniques in [6] to identify
the malicious nodes. For example, apart from exhaustively
searching over all combinations of 2d columns of −C (to
find d or less of them that can be linearly combined to obtain
the parity p[K]), one can also use a variant of the Petterson-
Gorenstein-Zierler decoding algorithm (used in Galois fields
for decoding Reed-Solomon codes [14]) to efficiently deter-
mine the d′ errors based on the syndrome p[K] [6].

C. Two-Hop Information Received every K Iterations

In the redundant implementation in (4) with matrices A and
B as in (6), each node vi in the set {v1, v2, ..., vn} is in charge
of updating its own state variable xi[k] and clearly has access
to the variables in u[k] that it needs (node vi is updating xi[k]
as in (2) using information from its immediate neighbors).
However, the last 2d variables of r[k] are actually internal to
node v1 which is implementing the checking scheme. Node v1
clearly has access to r[k] but requires two-hop transmissions
to maintain access to u[k]. To relax this requirement, we have
node v1 treat u[k] as zero1 at iterations 0, 1, ...,K− 1, so that
the update (using the choices in (6) and D = I2d) becomes

r′[k + 1] =

[
A 0

CA− C I2d

]
r′[k] +

[
B
0

]
u[k] , (11)

with an (additional) error of the form

δ[k] = −
[

0
CB

]
u[k]

introduced at each iteration k.
Clearly, with the above updates, the error vector at the end

of the time window becomes

ε′[K] =


0

ε2[K]
...

εn[K]
02d


︸ ︷︷ ︸

=ε[K]

−
[

0n
CB

∑K−1
t=0 u[t]

]
︸ ︷︷ ︸

=
∑K−1
t=0 δ[t]

, (12)

where 02d (0n) is the 2d-dimensional (n-dimensional) vector
of all zeros.

Furthermore, if the two-hop neighbors of node v1 provide
the values

∑K−1
t=0 uj [t] for j = 1, 2, ...,m (i.e., each two-hop

neighbor vn+j provides the cumulative sum of its xn+j values
over the time window), then node v1 can easily compute the
adjusted syndrome p′[K] as

p′[K] = p[K] +Q

(
K−1∑
t=0

δ[t]

)
= Qr′[K] + CB

K−1∑
t=0

u[t] .

1Other choices of u[k] are also possible, as long as proper adjustments are
made once the cummulative sum of u[k] is received at iteration K.



This adjusted syndrome satisfies

p′[K] = [−C I2d] ε[K] = −C


0

ε2[K]
...

εn[K]


︸ ︷︷ ︸

=ε̃[K]

.

Therefore, if any 2d columns of C are linearly independent
and the error vector ε̃[K] has at most d′, d′ ≤ d, nonzero
entries, then these entries can be detected and identified based
on the syndrome p′[k]. To do this, one can use any of the
techniques described at the end of the previous section (e.g.,
define −C to be a Vandermonde matrix with distinct nonzero
parameters, etc.). The proof of the following lemma is omitted
as it follows similar steps as the proof of Lemma 1.

Lemma 2: Suppose we build the monitor in (11) with
matrix C having the property that any 2d columns of it are
linearly independent. Furthermore, assume that each malicious
node vi is associated with a nonzero εi[K] and that two-
hop neighbors of node v1 correctly report their cumulative
sums at time instant K in (12). Then, we can guarantee (i)
detection of the presence of up to 2d malicious nodes within
the neighborhood of node v1, or (ii) identification of up to d
malicious nodes within the neighborhood of node v1.

It is important to point out that the above analysis assumes
that the cumulative sums

∑K−1
t=0 uj [t], j = 1, 2, ...,m, are

reported correctly to node v1 by its two-hop neighbors vn+j ,
respectively, at iteration K. This is not a strong assumption
because even though node v1 is not in position to determine if
node vn+j reports an erroneous cumulative sum

∑K−1
t=0 uj [t],

all of the (immediate) neighbors of node vn+j can easily flag
this. In our future work, we plan to explore approaches that
can also handle erroneous reporting by two-hop neighbors
(by allowing additional errors, beyond errors in ε̃[K], to be
introduced in the adjusted syndrome p′[k]).

D. Discussion

The proposed error detection and identification scheme
groups together the total error εi[K] because the objective is to
identify whether node vi is malicious. This is not restrictive
in the sense that if node vi is identified as malicious, i.e.,
node vi is associated with a nonzero εi[K], then the effect of
node vi on the computation can be corrected without having
to determine the individual errors that node vi injected in the
computation—all that is needed is to subtract εi[K] from the
state variable of node vi and continue the average consensus
iteration (see, e.g., [15]).

It is worth noting that node vi will not be identified as
malicious if it introduces errors in the interval [0,K − 1] but
manages to have εi[K] = 0 at the end of the time window;
however, this also implies that the errors node vi introduces
are not going to affect the outcome of the average consensus
scheme. This approach should be contrasted with the approach
in [6], which aims at identifying individual errors ei[t] (for
some t’s in [0,K − 1]). Also note that there are ways to
deal with malicious nodes that, in order to remain undetected,
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Fig. 1. Left: Undirected graph Gu considered in the example. Right:
Connections for the monitor implemented at node v1 (dotted lines
indicate periodic transmissions from two-hop neighbors).

inject errors such that the total error is zero at multiples of the
checking period K. One easy way to do this is to randomize
the length of the checking window (K) by having each checker
node randomly determine when to request accumulated values
from its two-hop neighbors.

Before closing these discussions, we should point out that
in practice both the average consensus and checking processes
will have to deal with finite precision issues. Thus, one would
have to carefully decide whether small nonzero values in the
parity vector p[K] are due to the presence of a malicious node
or simply due to finite precision limitations. Some discussions
and references on such issues can be found in [6]. For example,
the parameters y1, y2, ..., yn of the Vandermonde matrix in
(10) could be chosen to be close to unity (or, if one is willing
to deal with complex values, equally spaced on the unit circle).

IV. ILLUSTRATIVE EXAMPLE

Consider the undirected graph Gu = (V, E) of order N = 9,
with V = {v1, v2, ..., v9} and edges as shown on the left of
Fig. 1. The initial values of the nodes are taken to be x[0] =
[x1[0], x2[0], ..., x9[0]]

T = [1, 2, ..., 9]T so that the average
is V = 5. We assume that nodes know an upper bound N ′ =
10 on the number of nodes and use weights 0.1 on all edges
(and appropriate self-weights).

We now describe the non-concurrent scheme from the point
of view of node v1; however, please keep in mind that
each node in the network is doing something analogous. The
neighbors of node v1 are N1 = {v2, v3, v4, v5}, whereas
the set N (2)

1 \ (N1 ∪ {v1}) = {v6, v7} (the subnetwork
associated with node v1 as a checker node is shown on the
right of Fig. 1). Therefore, in (3), we have n = 5, m = 2,
q[k] = [x1[k], x2[k], ..., x5[k]]

T ; and u[k] = [x6[k], x7[k]]
T ,

with matrices A and B given by

A =


0.6 0.1 0.1 0.1 0.1
0.1 0.7 0 0 0
0.1 0 0.8 0 0
0.1 0 0 0.8 0
0.1 0 0 0 0.9

 , B =


0 0

0.1 0
0.1 0
0 0.1
0 0

 .

We choose d = 2 so that node v1 can detect and identify
up to two malicious nodes, and we set

C = −V (1,−1, 2,−2, 3) = −

 1 −1 2 −2 3
1 1 4 4 9
1 −1 8 −8 27
1 1 16 16 81
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Fig. 2. Average number of two-hop messages saved at each iteration.

(i.e., we choose y1 = 1, y2 = −1, y3 = 2, y4 = −2,
and y5 = 3) so that matrices A and B can be obtained
as in (11). The redundant state is initialized to r[0] =
[1, 2, 3, 4, 5,−12,−76,−126,−520]T .

To illustrate how the nonconcurrent scheme works, suppose
we take K = 10 and run the iteration in (11) for k = 0, 1, ..., 9.
Furthermore, assume that the values of u1[0], u1[1], ..., u1[9]
are such that

∑9
t=0 u1[t] = 45.19, and the values of u2[0],

u2[1], ..., u2[9] are such that
∑9
t=0 u2[t] = 59.98 (these values

could be arbitrary).
Assume that node v3 is malicious and adds additive errors

e3[0], e3[1], ..., e3[9] to its value so that
∑9
t=0 e3[t] = 11.

We update r′[K] as in (11) and at K = 10, we have
r′[10] = [5.11, 2.99, 8.71, 5.14, 4.24, −7.46, −11.06,
−73.52, −224.32]T . We calculate p[10] = Qr′[10] and obtain
p′[10] =

[
22, 44, 88, 176

]T
; as expected p′[10] =

11 × V (:, 3) where V (:, 3) is the third column of matrix V .
This implies that a total error of 11 has been added to the
variable x3 by node v3.

We also provide a simulation study to illustrate the ben-
efits of the proposed approach in terms of the reduction on
the number of two-hop messages that are required. More
specifically, we consider random undirected graphs of order
N = 50, where an edge is present between a pair of nodes
with probability p (independently among different pairs of
nodes). In Fig. 2, we plot, the sum (over all nodes vj) of the
number of two-hop neighbors that are not direct neighbors
of node vj . This number is directly related to the number of
messages to two-hop neighbors that are saved at each iteration
by using non-concurrent checking. We generate each point for
a particular value of p by averaging over 100 random graphs.
As we can see, for p = 0.3, each node saves on average close
to 36 messages per iteration. As expected, the savings diminish
as the graphs get denser.

V. CONCLUSIONS

In this paper, we have considered the problem of distributed
average consensus in the presence of malicious nodes that may

try to influence the outcome of the computation via incorrect
updates. The proposed algorithm allows each node vj to check
its neighboring nodes based on information that it receives
from them directly, as well as information that it receives
periodically by their neighbors (i.e., by the neighbors of its
neighbors). The main advantage of the proposed scheme is that
it ensures that two-hop information is only needed periodically,
which significantly relaxes the communication overhead.

In the future, we plan to explore ways to detect and identify
nodes that enter nonzero errors at certain time steps but try to
avoid detection by ensuring that their cumulative error is zero.
We also plan to explore ways to handle incorrect information
provided by two-hop neighboring nodes. Another interesting
future direction is towards switching (undirected) topologies,
which can take advantage of non-concurrent error correction
schemes in switched linear systems [16]. Utilizing two-hop
information to simultaneously perform checking and speed-
up convergence to the average is also an interesting future
direction.
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