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Abstract—This paper addresses the power flow problem for
electric power networks that are based on inverter-interfaced
resources. We consider inverter-based resources operating in
grid-forming and grid-feeding modes, and formulate a power flow
model that accounts for the terminal relations of these resources.
Then, we present Newton’s solution method for computing the
unknowns in such model, and leverage the structure of the
associated iterations to formulate a Quasi-Newton algorithm. We
show that such algorithm is closely related to the conventional
power flow solution method that is widely adopted in the power
systems literature. Numerical results are presented to compare
the performance of our proposed Quasi-Newton method to that
of Newton’s Method.

Index Terms—Grid-Forming Inverters, Power Flow Problem,
Quasi-Newton Methods.

I. INTRODUCTION

The conventional power flow problem that appears in
most well-known textbooks is formulated assuming that syn-
chronous generators are the only sources of power in the
system (see, e.g., [1], p. 327-329). In this formulation, all
generators but one, referred to as the slack generator, are
assumed to behave as “P-V” sources, i.e., the output voltage
of each generator is fixed at some value and so is the power it
injects into the system. The slack generator compensates for
the difference between generation and load demand and the
losses in the system, and is modeled as a voltage source. Loads
are described as “P-Q”, i.e., the active and reactive power they
consume is fixed. Then, given the active power injected by
all generators but the slack bus, and the active and reactive
power consumed by the loads, the problem is to calculate all
remaining variables in the system, i.e., the angles at all buses
in the network, voltage magnitudes at load buses, and reactive
power injected by all generators (see [1], p. 327).

With the modernization of the power grid, synchronous
generators are being replaced by renewable resources such as
solar photovoltaic installations and wind turbine generators.
These renewable-based resources are interfaced with the grid
via inverters. In steady-state, the terminal behavior of such
inverters is very different to that of synchronous generators,
and depends on how the inverter is operated. Currently, there
are two modes in which such inverter interfaces are typically
operated; these are referred to as grid-following (GFL) and
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grid-forming (GFM) modes. When operating in GFL mode,
the inverter synchronizes to the grid typically via a phase
locked loop [2], and its lower-level controls cause the inverter
terminals to operate as a signal controlled current source
[3]. When operating in GFM mode, the lower-level controls
cause the inverter terminals to operate as a signal controlled
voltage source whose voltage magnitude and phase angle are
regulated via a primary control scheme [3]. In this paper, we
consider the three main such schemes, namely, droop [4]–
[6], virtual synchronous machines [7]–[9], and dispatchable
virtual oscillator control (dVOC) [10]–[12]. We focus on the
power flow problem for power systems with inverter-interfaced
resources, and provide numerical algorithms to solve it.

Our main contributions are a formulation of the power
flow problem for electric power systems based on inverter-
interfaced resources, as well as the development of a Quasi-
Newton algorithm to solve such problem. One of the features
of the proposed algorithm is that it enables computing the
solution by solving two separate problems iteratively. The
first of these problems involves solving a conventional power
flow problem, whereas the second one comprises a system of
linear equations. The main advantage of our proposed solution
method over Newton’s method is that it facilitates a seamless
repurposing of conventional power flow solvers for power-flow
problems involving inverter-based resources (IBRs).

To the best of our knowledge, there is no power flow
problem formulation in the literature that takes into account
the inverter terminal relations for GFM inverters. Nonetheless,
several efforts have been made to formulate the power flow
problem for systems based on IBRs. Authors in [13] performed
unbalanced three-phase load-flow analysis on a low voltage
(LV) distribution network with high penetration of IBRs. In
[14], a three phase power flow modeling approach for LV
networks with high rooftop solar PV penetration is proposed.
A three phase power flow algorithm is proposed in [15] for
islanded microgrids with droop-based inverters.

This paper is organized as follows. In Section II, we de-
scribe the steady-state terminal relations for IBRs, and derive
expressions for their active and reactive power injections.
In Section III, we utilize the expressions derived in Sec-
tion II to formulate the power flow problem for electric IBR-
based power systems. In Section IV, we present two iterative
methods for solving the system of non-linear equations that



constitute the power flow problem. In Section V, numerical
results that compare the performance of both solution methods
are presented. Concluding remarks are provided in Section VI.

II. STEADY-STATE MODELS FOR GFM INVERTERS

Here, we derive models describing the steady-state terminal
behavior of GFM inverters under droop, virtual synchronous
machine, and dispatchable virtual oscillator control. Our start-
ing point to derive such models is the generic primary-control
model for GFM inverters proposed in [16]. Due to their
behavior, GFL inverters can be modeled as negative loads
in the power flow formulation; therefore we do not discuss
them here.

Let ω and ω0 respectively denote the angular frequency of
the GFM inverter and the nominal frequency of the system
the inverter is connected to, both measured in rad/s. Let V
denote the magnitude of the inverter’s terminal voltage, and
E denote the magnitude of the nominal voltage, both measured
in per unit. Let P and Q denote respectively the injected
active and reactive power by the inverter into the external
system it is connected to, both in per unit. Also, let P g and
Qg respectively denote reference values for said active and
reactive power injections, both in per unit. With the assumption
that the internal inverter reactance is negligible, the steady-
state behavior of the generic GFM inverter model proposed in
[16] is given by

0 = (ω0 − ω) + κfe
⊤
1 T

(
ψ − π

2

)[
P g − P
Qg −Q

]
,

0 = f(V ) + κve
⊤
2 T

(
ψ − π

2

)[
P g − P
Qg −Q

]
, (1)

where e1 = [1, 0]⊤, e2 = [0, 1]⊤, ψ ∈ [0, 2π) is a rotation
angle (see [10], for more details), T (ϕ) is a rotational matrix
defined by

T (ϕ) =

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
,

and κf [rads−1], κv [p.u.], f(V ) [p.u.] represent the (inverse)
frequency and voltage droop coefficients of the primary con-
trol, and voltage deviation from nominal voltage, respectively.
The values of κf , κv , and f(V ) for droop, VSM and dVOC
are given in Table I, where β and γ respectively denote the
synchronization gain of the controller and voltage-amplitude
control gain, α = ω0β, and φ and ϑ are respectively frequency
droop coefficient and voltage droop coefficient. Note that in
steady state, droop control and VSM control have the same
behavior.

TABLE I: Parameters for the Generic Primary Control Model.

Control κf κv f(V )

droop/VSM 1
φ

1
ϑ

−V + E

dVOC α
V 2

β
V γ

−V 3 + E2V

Now, by plugging the values in Table I in the expressions in
(1), we obtain steady-state terminal relations as follows. The

active and reactive power injected into the external system by
a dVOC-based GFM inverter are respectively given by

P = P g +
V 2

α
sin(ψ)(ω0 − ω) +

γ

β
cos(ψ)(E2 − V 2)V 2,

Q = Qg − V 2

α
cos(ψ)(ω0 − ω) +

γ

β
sin(ψ)(E2 − V 2)V 2.

(2)

The active and reactive power injected into the external system
by a droop/VSM-based GFM inverter are respectively given
by

P = P g + φ sin(ψ)(ω0 − ω) + ϑ cos(ψ)(E − V ),

Q = Qg − φ cos(ψ)(ω0 − ω) + ϑ sin(ψ)(E − V ). (3)

With the the steady-state terminal relations in (2) – (3)
imposed by GFM inverters on the buses they are connected to,
we can now formulate the power flow model for inverter-based
power systems.

III. INVERTER-BASED POWER FLOW FORMULATION

Consider, a power system with n buses, indexed by the ele-
ments in i ∈ V = {1, .., n}, and assume that the system has l
dVOC-based inverters, (m − l) droop/VSM-based inverters,
and (n−m) constant power loads. Without loss of generality,
assume that the l dVOC-based inverter are connected to buses
i = 1, ..., l, the m−l droop/VSM-based inverters are connected
to buses i = l+1, ...,m and the n−m constant power loads are
connected to buses i = m+1, ..., n. Let Vi [p.u.] and θi [rad]
respectively denote the magnitude and angle of the phasor
associated with the voltage at bus i, i = 1, .., n. Without loss
of generality, assign bus 1 to be the reference bus and set
θ1 = 0. Let

V =
[
(V d)⊤, (V g)⊤

]⊤
, θ =

[
θ2, . . . , θn

]⊤
,

where V g = [V1, . . . , Vm]⊤ and V d = [Vm+1, . . . , Vn]
⊤, and

define

pi(θ, V ) :=

n∑
j=1

ViVj

(
gi,j cos(θi − θj) + bi,j sin(θi − θj)

)
,

qi(θ, V ) :=

n∑
j=1

ViVj

(
gi,j sin(θi − θj)− bi,j cos(θi − θj)

)
,

(4)

with gij and bij respectively denoting the real and imaginary
parts of the (i, j)-entry of the network admittance matrix.

Let ω∗ denote the system steady-state frequency. Let P d
i

and Qd
i denote the active and reactive power consumed by the

load connected to bus i, i = m+1, . . . , n; then, by using the
expressions in (2) – (3) and noting that the frequencies of all
inverters should be identical in steady-state, we have that

Pi(µ, Vi) = pi(θ, V ),

Qi(µ, Vi) = qi(θ, V ), (5)

where µ is the mismatch between the system nominal fre-
quency and the steady-state frequency defined as µ := ω0−ω⋆,



J(xk) =
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Fig. 1: Structure of the Jacobian matrix of f(x) at x = xk.

Pi(µ, Vi) =



P g
i +

V 2
i

αi
sin(ψ)µ+ γi

βi
cos(ψ)(E2

i − V 2
i )V

2
i ,

for i ∈ {1, 2, . . . , l},
P g
i + φi sin(ψ)µ+ ϑi cos(ψ)(Ei − Vi),

for i ∈ {l + 1, . . . ,m},
−P d

i , for i ∈ {m+ 1, . . . , n},
(6)

and

Qi(µ, Vi) =



Qg
i −

V 2
i

αi
cos(ψ)µ+ γi

βi
sin(ψ)(E2

i − V 2
i )V

2
i ,

for i ∈ {1, 2, . . . , l},
Qg

i − φi cos(ψ)µ+ ϑi sin(ψ)(Ei − Vi),

for i ∈ {l + 1, . . . ,m},
−Qd

i , for i ∈ {m+ 1, . . . , n}.
(7)

Note that in (5) – (7), there are 2n equations and 2n unknowns,
namely µ, θ2, . . . , θn and V1, V2, . . . , Vn.

Note that the reactance of the transmission lines depend on
the system steady-state frequency, ω∗; hence the bi,j’s in (4)
should be a function of µ = ω0 − ω∗. However, we assume
that µ is small enough so that changes in line reactance values
are negligible and therefore we assume the bi,j’s are constant
(their values are computed using ω0).

IV. NUMERICAL SOLUTION METHODS

First, we formulate Newton method to solve for the value
of x := [µ, θ⊤, V ⊤]⊤ that satisfies (5), and use it afterwards
as the basis for formulating a Quasi-Netwon algorithm.

A. Newton Method

First, let

pg(θ, V ) = [p2(θ, V ), . . . , pm(θ, V )]⊤,

pd(θ, V ) = [pm+1(θ, V ), . . . , pn(θ, V )]⊤,

qg(θ, V ) = [q1(θ, V ), . . . , qm(θ, V )]⊤,

qd(θ, V ) = [qm+1(θ, V ), . . . , qn(θ, V )]⊤,

P g(µ, V g) = [P2(µ, V2), . . . , Pm(µ, Vm)]⊤,

Qg(µ, V g) = [Q1(µ, V1), . . . , Qm(µ, Vm)]⊤,

P d = [P d
m+1, . . . , P

d
n ]

⊤,

Qd = [Qd
m+1, . . . , Q

d
n]

⊤,

and define

f(x) :=


p̃1(x)
p̃g(x)
p̃d(x)
q̃g(x)
q̃d(x)

 , (8)

where

p̃1(x) := p1(θ, V )− P1(µ, V1), (9a)
p̃g(x) := pg(θ, V )− P g(µ, V g), (9b)

p̃d(x) := pd(θ, V ) + P d, (9c)
q̃g(x) := qg(θ, V )−Qg(µ, V g), (9d)

q̃d(x) := qd(θ, V ) +Qd; (9e)

we refer to f(·) as the mismatch function for the power flow
model in (5) – (7).

Newton’s method for computing the solution to the power
flow model in (5) – (7) can be formulated as follows:

J(xk)∆xk = −f(xk), (10)
xk+1 = xk +∆xk, k = 0, 1, 2, . . . , (11)

with µ0 = 0, θ0 = 0n−1, and V0 = 1n, where 0n−1 denotes
the (n − 1)-dimensional all-zeros vector and 1n denotes
the n-dimensional all-ones vector, and J(xk) denoting the
Jacobian matrix of f(x) evaluated at xk := [µk, θ

⊤
k , V

⊤
k ]⊤.

The structure of J(xk) is given in Fig. 1.

B. Quasi-Newton Method

Next, we develop a Quasi-Newton algorithm, which essen-
tially decouple the problem of computing the solution into two
separate problems. An advantage of this alternative algorithm
over Newton method is that it enables repurposing standard
power flow solvers implemented in commercial packages to
solve the power flow problem associated with inverter-based
power systems.
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∂θ
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θk,Vk
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m

0m−1
∂pg(θ,V )
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θk,Vk

∂pg(θ,V )
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∣∣
θk,Vk
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0n−m
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.

Fig. 2: Matrix associated with the proposed Quasi-Newton algorithm.

The first step in formulating our proposed Quasi-Newton
algorithm is to reorder the columns of f(xk) and define a
new mismatch function, g(·), as follows:

g(xk) :=


p̃1(xk)
p̃g(xk)
p̃d(xk)
q̃d(xk)
q̃g(xk)

 .

Next, we reorder the blocks in J(xk) to be consistent with
g(xk) and set some of the entries of the resulting matrix to
zero. In particular, we set to zero the blocks ∂p̃d(x)

∂µ

∣∣
xk

and
∂q̃d(x)

∂µ

∣∣
xk

corresponding to buses with constant power loads.

Also, the entries of ∂q̃g(x)
∂µ

∣∣
xk

are small for inductive power
system (see [10]); therefore we set this block to zero. Then,
using the same argument as that used when developing the
standard decoupled power flow algorithm, we set to zero the
following blocks: ∂p̃1(x)

∂V g

∣∣
xk

, ∂p̃g(x)
∂V g

∣∣
xk

, and, ∂qg(θ,V )
∂θ

∣∣
θk,Vk

,
as the entries of these matrices are very small compared
to those of the other entries of the Jacobian matrix (see
e.g., [17]). Similarly, the entries of ∂p̃g(x)

∂µ

∣∣
xk

, ∂q̃d(x)
∂V g

∣∣
xk

and
∂qg(θ,V )

∂V d

∣∣
θk,Vk

are small; therefore, we set these blocks to zero
as well. The matrix that results from this process, which we
denote by L(xk), is given in Fig. 2.

We can now use L(xk) and g(xk) to formulate the following
Quasi-Newton algorithm:

L(xk)∆xk = −g(xk), (12a)
xk+1 = xk + s∆xk, (12b)

with µ0 = 0, θ0 = 0n−1, and V0 = 1n, and s ∈ (0, 1]. Now,
because of the sparsity structure of L(xk), we can rewrite
(12a) as follows

∆µk = −
p̃1(xk) +

∂p1(θ,V )
∂θ

∣∣
θk,Vk

∆θk + ∂p1(θ,V )
∂V d

∣∣
θk,Vk

∆V d
k

∂p̃1(x)
∂µ

∣∣
xk

,

(13)



∂pg(θ,V )
∂θ

∣∣
θk,Vk

∂pg(θ,V )
∂V d

∣∣
θk,Vk

∂pd(θ,V )
∂θ

∣∣
θk,Vk

∂pd(θ,V )
∂V d

∣∣
θk,Vk

∂qd(θ,V )
∂θ

∣∣
θk,Vk

∂qd(θ,V )
∂V d

∣∣
θk,Vk


︸ ︷︷ ︸

=:M(xk)

[
∆θk
∆V d

k

]
= −

p̃g(xk)p̃d(xk)
q̃d(xk)

 ,

(14)

∂q̃g(x)

∂V g

∣∣
xk
∆V g

k = −q̃g(xk). (15)

In (13), note that if the Quasi-Newton algorithm converges,
∆µk → 0 as k → ∞.

Note that the matrix

M(xk) =



∂pg(θ,V )
∂θ

∣∣
θk,Vk

∂pg(θ,V )
∂V d

∣∣
θk,Vk

∂pd(θ,V )
∂θ

∣∣
θk,Vk

∂pd(θ,V )
∂V d

∣∣
θk,Vk

∂qd(θ,V )
∂θ

∣∣
θk,Vk

∂qd(θ,V )
∂V d

∣∣
θk,Vk


is the Jacobian matrix for the standard power flow problem
(see, e.g., [1]); thus, the expression in (14) coincides with that
of Newton algorithm for the conventional power flow prob-
lem. Therefore, this portion of the proposed Quasi-Newton
algorithm can be implemented using a commercial power
flow solver.

The proposed Quasi-Newton algorithm can be implemented
as follows. First, at each iteration k, compute ∆θk and ∆V d

k

from (14). Then, compute ∆µk and ∆V g
k concurrently in (13)

and (15) respectively; see Algorithm 1 for the pseudocode of
such implementation.

V. NUMERICAL RESULTS

In this section, we present simulation results for both the
standard Newton method and the proposed Quasi-Newton
method. The two algorithms are tested on modified versions
of the IEEE-14 bus test system [18], IEEE-57 bus test system
[19], and IEEE-300 bus test system [20]. The five synchronous
generators in the IEEE-14 bus test system are replaced by three
GFM dVOC inverters and two GFM droop/VSM inverters. The



Algorithm 1: Implementation of the Quasi-Newton
algorithm

initialize µ0 = 0, θ0 = 0n−1, V0 = 1n, ε = ∞, and
k = 0;

set s and tolerance tol;
while ε > tol do

compute ∆θk and ∆V d
k using (14);

compute ∆µk in (13) and ∆V g
k using (15) ;

compute xk+1 using (12b);
ε = ∥g(xk)∥∞;
k = k + 1.

end

TABLE II: Simulation parameters.

Symbol Value
φ 0.8038 s/rad
ϑ 25 p.u.
β 0.0033 p.u.
γ 0.0796 p.u.
ψ π/2 rad

seven synchronous generators in the IEEE-57 bus test system
are replaced by four GFM dVOC inverters and three GFM
droop/VSM inverters. The sixty-nine synchronous generators
in the IEEE-300 bus test system are replaced by thirty-
five GFM dVOC inverters and thirty-four GFM droop/VSM
inverters. Parameters in Table II from [21] are used in all
simulations.

TABLE III: Comparison of iteration number and execution
time for Newton method and Quasi-Newton method for 10−4

error tolerance.

# of buses Newton Quasi-Newton
Iteration # time [s] Iteration # time [s]

14 6 0.0165 25 0.0179
57 5 0.2164 32 0.4641
300 6 8.574 29 16.231

Total convergence time as shown in Table III for the Quasi-
Newton method is approximately twice the Newton method;
however, the time per iteration for the Quasi-Newton method
is much less. Commercial power flow solvers can be exploited
to solve equation (14) of the Quasi-Newton algorithm. A
traditional power network has more loads connected than
generators, hence the greater part of the floating-point op-
erations of the Quasi-Newton algorithm is in equation (14),
which can be solved using commercial power flow solvers.
Since commercial power flow solvers are optimized to perform
faster than regular solvers implemented on ordinary computer
systems, this will reduce the time to convergence of the
algorithm.

VI. CONCLUDING REMARKS

This paper presents a power flow problem formulation for
inverter-based power systems. The steady-state behavior of
GFM inverters control strategies are used to set the terminal

constraints on the bus variables. Solution methods to the
problem were discussed and numerical results illustrating the
solution methods were presented.
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